
#-1

Basic xtUML

Modeling

#-2

Levels of Commitment

 Natural language and informal diagrams

 Use cases

 Activity diagrams

 Sequence diagrams

 Structural models

 Components & Interfaces

 Class models

 Data types

 Behavioral models

 State models

 Activities

Prior course}

#-3

Requirements Clarification Process

The process was:

 Find all your people, resources, practices, etc.

 Find out what the system-as-a-whole does

 Determine the precise behavior of each use case

 And establish how it communicates with others

But it was really all about learning about the problem.

Get

Organized

Activity

Diagrams

Use

Cases

Sequence

Diagrams

#-4

Abstraction

Now that everything is:

 reviewed,

 signed off, and

 it’s all in our heads,

it time to

THINK
And from that thinking, we create, and commit to, abstractions.

#-5

Levels of Commitment

We represent our abstractions in models of various types.

 Natural language and informal diagrams

 Use cases

 Activity diagrams

 Sequence diagrams

 Structural models

 Components & Interfaces

 Class models

 Data types

 Behavioral models

 State models

 Activities

This course}

#-6

Executable Model Hierarchy

Component Diagram
• Decompose the application

• Define Interfaces

Class Diagram
• Abstractions

• Operations

State Diagram
• Lifecycle

• Event handling

Activities
• Processing

High

level

Low

level

#-7

Table of Contents

1. Requirements Clarification

2. Classes

3. Attributes

4. Associations

5. Class Modeling

6. State Models

7. Activities

8. Actions

9. Distribution of Intelligence

10. Model Execution

11. Components and Interfaces

12. Model-based Testing

13. What’s Next?

Component Diagram
• Decompose the application

• Define Interfaces

Class Diagram
• Abstractions

• Operations

State Diagram
• Lifecycle

• Event handling

Activities
• Processing

#-8

1. Requirements Clarification

1

#-9

Building Executable Models

To begin to build executable models, you must first load the

requirements clarification models and functional specification

into your brain.

Use

CaseUse

Case

#-10

Read the Functional Specification

The functional specification contains a list of functional

requirement describing what the system must do.

Read it.

It is expressed in natural language.

#-11

Relationship to Use Cases

1

41

1216

31

11

15

Use cases, our basic unit of

organization, cover multiple

functional requirements.

#-12

Scope

The scope of the requirements-clarification use cases

is the system.

The business and environment

What you are building

Just the software

Work

System

Software

Requirements Gathering

Requirements Clarification

Product Construction

✔

#-13

Each Use Case is a Feature

Features Functions

Move
Elevator

Stop
Elevator

Initiate
Close Door

Initiate
Open
Door

Request
Elevator

Order

Elevator

Request
Elevator

Initiate
Open
Door

✔

#-14

Use Cases

Each use case shall contain:

 a description

 an activity diagram, and optionally

 a sequence diagram

Use Case Name/Number

Pre-conditions:

Post-conditions:

Scenario:

#-15

Use Case Definition

Each use case follows this pattern:

These are again in natural language.

Read them.

<Use Case Number>: <Use Case Name>

Pre-conditions: What must be true before the

use case can execute

Post-conditions: What must be true after the

use case has executed

Scenario: A description of just what happens

#-16

Activity Diagram

Activity

Swimlane

Synchronization

Fork

Synchronization

Join

Signal Send

Event received

Actor role

#-17

Sequence Diagrams

Build a sequence diagram if it helps detail your understanding.

Lifeline
Synchronous

messageMark

Span Asynchronous

message

#-18

2. Classes

2

#-19

Executable Model Hierarchy

Component Diagram
• Decompose the application

• Define Interfaces

Class Diagram
• Abstractions

• Operations

High

level

Low

level

#-20

Class Diagram

A class diagram consists of:

 classes

 attributes

 associations, and

 operations

We shall examine

each in turn.

#-21

Class

A class is a conceptual entity within the subject matter at hand.

conceptual |kənˈsep ch oōəl|

adjective

of, relating to, or based on mental concepts

entity |ˈentitē|

noun (pl. -ties)

a thing with distinct and independent existence

subject matter |ˈsəbjəkt ˈmatər|

topic under consideration

#-22

Class

A class represents a set of instances that all:

 have the same behavior

 are described in the same way

“Set” means that each instance is unique.

“Same behavior” means that each instance behaves in

the same way as the other instances.

“Described in the same way” means that any data

describing the instance applies uniformly to each one.

#-23

Start with the Requirements!

Re-read the requirements, as clarified.

Use Case Name/Number

Pre-conditions:

Post-conditions:

Scenario:

#-24

Blitz

A blitz is a technique for getting started.

There are no wrong answers.

 We don’t categorize

 We don’t organize

 We don’t evaluate

 We just enumerate

The purpose is to provide a starting point.

#-25

Class Blitz

Look at all the candidates and categorize them.

 Definitely a class

 Maybe a class

 Definitely not a class

#-26

Finding Classes

 Tangible things

 Roles

 Incident

 Interaction

 Specification

Don’t classify classes.

These are just guides

for places to look.

#-27

Tangible Classes

AirportElevator

Airplane
RunwayShaft

Door

Buttons

Cabin

• airplane • message

• valve • robot

• circuit breaker • power supply

• dog • dog owner

• elevator • cabin

#-28

Roles as Classes

• broker • client

• landlord • tenant

• customer • account holder

• passenger • administrator

• pilot • air traffic controller

#-29

Incident Classes

• performance • visit

• system crash • event

• breakdown • service call

• request • order

• flight • landing

#-30

Licence

Interaction Classes

• cable • pipe connection

• birth • link

• purchase • marriage

• order • sale

• command • landing

#-31

Specification Classes

• policy type • goal spec’n

• protocol • configuration def’n

• phone spec. • account type

• product spec. • vehicle model

• qualification • aircraft type

#-32

Finding Classes

We may observe that a number of

instances in the subject matter have

similar behavior and data.

We abstract from observed instances.

This is called
“extension.”

#-33

Finding Classes

Or we may observe, identify or

define a concept with specific

qualification criteria.

We abstract based on our ideal.

THE FOLLOWING ARE THE QUALIFICATIONS A

DOG MUST HAVE FOR ENTRY AT CRUFTS

This is called
“intension.”

#-34

Workshop

Blitz at least half-a-dozen classes.

Use the clarified requirements for input.

Be prepared to present your list to the class.

#-35

Class Definitions

Write a class definition that explains the

basis for abstraction for each class.

Aircraft Aircraft

Connect the model abstraction to the subject-matter thing.

#-36

Definitions

Write definitions for each thing you find.

Definitions may incorporate inclusion or exclusion criteria.

“A Message is a single coherent piece of information sent

between two applications. It consists of a header describing the

sender and receiver, and a body that can be anything.

“An Aircraft is anything that flies that must be monitored by the

air traffic control system. The aircraft may carry anything:

passengers, freight, nothing. The rules for what constitutes

something that must be monitored are described in ….”

#-37

Realms

Distinguish the thing in the system-under-study from the

abstraction.

Subject Matter Under Study Model

aircraft Aircraft

Connect the model abstraction to the subject-matter thing.

#-38

Class Definitions

A good class definition:

 connects the subject-matter concept in the system-under-

study to the model abstraction

 indicate creations, deletion and lifespan when appropriate

(classes and associations)

 Can immediately be understood by non-experts

#-39

Workshop

Properly define two class descriptions from the classes

you identified earlier.

#-40

Testing Classes

There are several tests you can apply to classes.

 The Uniformity Test

 The OR test

 The More-than-a-list test

 The Table test

 The –er test

#-41

The Uniformity Test

If instances of your classes have different data or different

behavior, you probably have two classes.

#-42

The Or Test

If your class description contains ‘or’ in a disjunctive way,

you probably have two classes.

An airplane is an aircraft with a minimum

take-off speed, or a helicopter.

An airplane is a passenger or cargo aircraft.

An airplane is run by a commercial airline,

such as Laos Airways or LAN Ecuador.

#-43

The More-Than-a-List Test

If your class description contains just a list, without any

abstraction, you need to search for the basis of abstraction.

A regional commercial airline is an

airline that takes paying passengers

for trips under 500km.

A commercial airline is Laos Airways or

LAN Ecuador.

A regional airline is an airline that

takes short trips, such as Laos

Airways or LAN Ecuador.

#-44

The Table Test

You should be able to fill in a table with candidate instances.

Flight/Passenger

Number Start End Price Paid

XL1541 UIO CUE $44 $44

QF5 SYD SIN $814 $82

My Sunday
Flight

Gloucester Gloucester $1.99/L $1.99/L

XL516 UIO MIA $1095

#-45

The –er Test

Classes should represent real “things” (concepts, rules,

specifications, occurrences, incidents) in the physical,

hypothetical or abstract world.

They should not be:

 implementation oriented

 vague –er names

These “classes” tend to be functionality wrappers.

Handler

Controller

Manager

#-46

Workshop

Test the classes you have defined up to this point.

Be prepared to share your results with the class,

including the class candidates you discarded after

testing.

#-47

#-48

3. ATTRIBUTES

3

#-49

Attributes

An attribute is an abstraction of a

single, relevant characteristic that

every instance of the class must have.

Each instance of the class may

have a different value for the attribute.

“Relevant” depends on the

requirements placed on

the subject matter.

Aircraft.color may be

relevant to fitting out, but

not to air traffic control.

Flight

Booking Start End Number Price

HPFGYI UIO MIA XL516 $1095

JKLOIP SYD SIN QF5 $814

HPFGYI BKK LPQ QV633 $631

GHJKLP EZE IGR AR1724 $244

#-50

Roles of Attributes

Attributes may take on one or more roles. They may be:

 descriptive: describes an instance of a class

 eg latitude

 naming: names an instance of a class

 eg, body number

 referential: refers to an instance of another class

 eg myOwner

It’s possible for an attribute to be all three (e.g. a role whose

identifying attribute is a descriptive name, such as “Tiny.”)

#-51

Descriptive Attributes

A descriptive attribute provides some information about

an instance.

The attribute must be able to have a value at some

point in the instance’s lifecycle.

If the attribute value for an

instance is “not applicable”

you need to factor your class.

If it doesn’t have a value yet,

that’s OK.

#-52

Naming Attributes

A naming attribute provides a label for an instance.

 License Number

 WayPoint Name

 Ticket Number

Highlighting these attributes helps understanding of the subject

matter being modeled.

The label may also be descriptive.

 eg Control Station.North Station

(i.e. it is the Control Station that happens to be at the north end)

The label may be arbitrary.

 eg Employee.EmployeeNumber
(i.e. it’s made up, possibly according to some policy)

At implementation time,

a handle performs the

same function.

#-53

Identifiers

An identifier is one or more attributes that, taken together

uniquely identify an instance of a class.

It may comprise one or more attributes.

Each attribute that
makes up an identifier

is an “identifying
attribute.”

#-54

Referential Attributes

A referential attribute is an attribute that refers to an

identifying attribute of another class.

A referential attribute
“formalizes an
association.”

#-55

Finding Descriptive Attributes

The terms you defined during requirements clarification are

good candidates.

#-56

Finding Naming Attributes

Don’t just slap down “ID”!

Ask if there’s anything that properly represents the abstraction.

What identifies

a phone?

#-57

Finding Identifiers

Pick the identifier that captures the abstraction you intend.

#-58

Finding Identifiers

An identifier may comprise more than one attribute.

A “compound identifier”
is an identifier
comprising many

(identifying) attributes.

#-59

Data Types

Every attribute has a domain-specific data type.

It has a value in the context of the subject matter.

Aircraft.Altitude: real

Aircraft.Altitude: height

Body.Length: char

Body.Length: number of bytes

#-60

Data Types

A type may have:

 units (e.g. , meters, feet, nautical miles)

 range (e.g. 10..260, natural, negative integer)

 initial value (e.g. temperature: 0)

System data types include:

 date

 time

 unique id

#-61

Workshop

For the classes for which you previously wrote descriptions, list

the attributes, including the type of each.

Be prepared to share your attributes with the class, including

any you eventually discarded.

#-62

Attribute Definitions

Write an attribute definition that explains the basis for

abstraction for the attribute.

Above Ground

Level (AGL)

Mean Sea

Level (MSL)

Altitude Altitude

#-63

Examples

“The speed of the aircraft is relative to the air

through which it travels, measured in knots,

between zero and 700.”

The speed of the aircraft is how fast it’s going.

units

range

#-64

Examples

“The length of a message is measured in

bytes. It may be between 0 to 256K-1. It is

initially zero.

The length of the message excludes the

header.

units

range

Lovely. It also excludes artichokes.

initial value

#-65

Attribute Definition Guidelines

 Connect subject matter concept or quantity to abstraction

 Readily understood by subject-matter experts

 For quantitative attributes:

 Units (meters, yards, degrees Centigrade, milliparsecs)

 Origin (above ground level, mean sea level)

 Initial value (false, 0 degrees Centigrade)

#-66

Testing Attributes

There are several tests you can apply to attributes.

 The Applies-to-All-Instances Test

 The Valid-Value Test

 The Multiple-Value Test

 The Compound-Value Test

They are all based on an attribute

having a single potential value that

has meaning in the subject matter.

#-67

Applies-to-All-Instances Test

Check that each attribute applies to all instances.

Aircraft Specification

Model Weight Range Runway Speed

A380 276.8 15.7 Group V 900

B747 178.8 13.45 Group IV 830

Sikorsky H19 0.4795 0.652 N/A 163

Dash 8 14.7 1.889 Group II 500

#-68

Valid-Value Test

Check that each attribute has a valid value at some point in its

lifecycle.

Flight

Number Start End Price Paid

XL1541 UIO CUE $44 $44

QF5 SYD SIN $814 $82

My 10th GLO GLO N/A £150

XL516 UIO MIA $1095

#-69

Multiple-Value Test

Check that each attribute has a single value.

Flight

Booking Start End Number Price

HPFGYI UIO MIA XL516 $1095

JKLOIP SYD SIN QF5 $814

HPFGYI BKK LPQ QV634/633 $631

GHJKLP EZE IGR AR1724 $244

#-70

Compound-Value Test

Check that each attribute is treated as a single unit.

Aircraft.(latitude, longitude)

Operation “Proceed along the latitude line”

Operation “Move from (57ºN, 1ºE) to (57ºN, 10ºE)”

You (in your subject matter) cannot break it apart. Someone

else might though.

#-71

Workshop

Write attribute descriptions for the attributes you identified

earlier.

Apply the tests.

Be prepared to share your descriptions with the class.

Highlight attributes that were discarded or changed.

#-72

Workshop

Compare your classes, attributes, and descriptions to those in

the provided solution.

List issues that require discussion.

#-73

#-74

4. Associations

4

#-75

Binary Associations

A binary association is an abstraction of a relationship

between two things that were abstracted as classes.

Each ‘end’ of the binary association has a:

 name that captures the meaning of the association

 multiplicity that captures the number of

instances that participate

A “link” is an instance of an association.

a “link” a “link” a “link”

#-76

Binary Associations

A binary association is an abstraction of a relationship

between two things that were abstracted as classes.

Each ‘end’ of the binary association has a:

 name that captures the meaning of the association

 conditionality that captures whether the instances must

participate in the association

#-77

Names

The name captures the role

the “target” class plays with

respect to the other end.

These are written:

Many books use roles instead

of verb phrases.

Ignore them.

Roles won’t tell you what

you need to know.

Dog Dog Ownerowns

is owned by

#-78

Multiplicity

The multiplicity captures the number of instances that

participate in the association.

Station Station Managermanages

is managed by1

1

Station Station

Manager

#-79

Multiplicity

The multiplicity captures the number of instances that

participate in the association.

Dog Dog Ownerowns

is owned by1..*

1

Dog Dog Owner

#-80

Conditionality

The conditionality captures whether an instance is required to

participate in the association.

Station Station Manageris managing

is managed by0..1

1

Station Station

Manager

#-81

Conditionality

The conditionality captures whether an instance is required to

participate in the association.

Dog Personowns

is owned by0..*

1

Dog Person

#-82

Association Identifiers

Names at the ends of associations may not be unique.

Therefore each association has a unique identifier.

Station On-Duty

Station Manager
is managing

is managed by1

1

Dog Dog Ownerowns

is owned by1..*

1R1

R3

#-83

Finding Associations

Capture the meaning of the association.

Be certain to name both ‘ends’ and check their multiplicity and

conditionality.

Read this as:

 (One) Station is managed by one On-Duty Station Manager

 An On-Duty Station Manager is managing one Station

Station On-Duty

Station Manager
is managing

is managed by1

1

R3

#-84

Association Descriptions

Every association must have a description that:

 connects the abstraction to the subject matter

 provides details about the

semantics of the association

or how it is used

 says when it is established

and removed (time scope)

R1: The association is created when the dog is acquired

and deleted when the dog is given or sold to a new owner or

when the dog or the owner cease to exist.

Don’t repeat what is on

the diagram.

One fact in one place!

#-85

Multiplicity Test

Check that the class is defined in such a way that it justifies

the multiplicity.

Can a Dog have multiple owners?

 At one time?

 Over time?

Do we need to know:

 What dogs were owned

in the past?

 Is that a separate association?

Your decisions must be based

on the requirements!

Dog Owner

Dog

These decisions define the

time scope of the model.

#-86

Conditionality Test

Check that the class is defined so it justifies the conditionality.

When is a dog a Dog?

 At birth?

 When ‘owned’?

 When a license is issued?

When is a dog owner a Dog Owner?

 When he has a dog?

 When he has a license?

 Once a dog owner, always a dog owner?

Your decisions must be based

on the requirements!

Dog Owner

Dog

These decisions define the

time scope of the model.

#-87

Time Scope

The model captures the instance population at

any given instant in time.

Be sure:

 the conditionality and

 multiplicity

reflect that fact.

Station Station Manager

is managing

is managed by1

1

R3

managed

has been

managed

1..*
R2

1..*

What does “instant in time”

mean? Exactly?

#-88

Preexisting Instances

Some instances exist before the system starts running.

Pub Table

Name Number Available State

The Kings Arms 23456 Yes …

The Queens Head 12345 No …

67890 No …

13579 Yes …

#-89

Workshop

Build associations between the classes you have so far.

Feel free to incorporate aspects of the provided solution.

Be sure to note:

 name

 multiplicity

 conditionality

for each ‘end’, and the

 association ID

for the association as a whole.

Remember to write association descriptions.

Apply the tests.

#-90

Association Classes

An association class is a class that comes about as a result of

an association.

The association may have:

 attributes that do not describe either participating class

 behavior of its own

Licence

• Owner

• DogName

• Date

#-91

Association Class

An association class is a class like any other.

And an association like any other.

#-92

Association Class

An association class is an association like any other.

Hence the name!

Dog Dog Ownerowns

is

owned

by

1..*

1R1

Dog License

#-93

Finding Association Classes

Association classes come about when:

 the association has data that describes it

 the association has behavior of some sort

Licence

• Owner

• DogName

• Date

#-94

Defining and Testing Association Classes

Define and test the ‘class’ bit as you would any class:

 The Uniformity test

 The OR test

 The More-than-a-list test

 The Table test

 The –er test

Define and test the ‘association’ bit as part of the association

descriptions.

 The Multiplicity test

 The Conditionality test

#-95

Generalization

Generalization partitions a set into subsets.

It is not the same as inheritance

Dog Cat

Pet

Dog Cat

Pet

#-96

5. Class Modeling

5

#-97

Class Modeling

Class modeling is rarely about the classes.

It’s easy to find:

 tangible classes

 classes derived from terms during clarification

 components of various sorts

But they often hide behavior of other classes.

Consider this example:

#-98

A Phone Class

A Phone class could hide the behavior of :

 the phone itself (on/off hook)

 the making of a call

 managing call-waiting

 creating a conference call

 etc

 etc

 etc

Better to split it up into multiple classes.

another example….

#-99

What are the Classes?

31

PROJECT TECHNOLOGY, INC.

1

2

3

4

5

6

9

8

7

17

18

19

11

12

13

16

15

14
10

20

21

22

Storage
Tank 1

Storage

Tank 2

Storage
Tank 3

Cooking
Tank 3

Cooking
Tank 1

Cooking
Tank 2

#-100

Workshop

Your job is to move fluid between storage tanks and cooking

tanks.

What are the classes?

How are they associated?

31

PROJECT TECHNOLOGY, INC.

1

2

3

4

5

6

9

8

7

17

18

19

11

12

13

16

15

14
10

20

21

22

Storage
Tank 1

Storage

Tank 2

Storage
Tank 3

Cooking
Tank 3

Cooking
Tank 1

Cooking
Tank 2

#-101

Simplistic Solution

Function OpenReservedPath(

StorageTank,

CookingTank);

OpenValve(StorageTank.Outlet);

If (StorageTank.ID = 1 and

CookingTank.ID = 3) then

OpenValve(Middle);

OpenValve(CookingTank.Inlet);

EndFunction;

OpenReservedPath(Storage1,

Cooking3);

31

PROJECT TECHNOLOGY, INC.

1

2

3

4

5

6

9

8

7

17

18

19

11

12

13

16

15

14
10

20

21

22

Storage
Tank 1

Storage

Tank 2

Storage
Tank 3

Cooking
Tank 3

Cooking
Tank 1

Cooking
Tank 2

Hmm, all storage tanks have an outlet
valve, and an upper or lower manifold.

And all cooking tanks have an inlet valve
and two manifolds. If we know which….

Then there’s valve 10-the middle one-that
connects the top and bottom tanks.

#-102

Simplistic Class Model

What’s wrong with this picture?

Valve Cooking Tankis isolated by

is input to1

1

R7

Storage Tank R8

1..*

1..* is connected to

is connected to

1

is isolated by 1

outputs from

#-103

What’s Wrong With That?

 The classes (tanks, valve etc) have complex behavior

 It’s not clear where the behavior belongs

 Should the Storage Tank empty itself?

 Or the Cooking Tank fill itself?

Valve Cooking Tankis isolated by

is input to1

1

R7

Storage Tank R8

1..*

1..* is connected to

is connected to

1

is isolated by 1

outputs from

In short, it’s

extremely brittle

What about the intermediate valves?

#-104

Possible Changes

… we make changes:

 Add a valve in the middle of a pipe

 Change target of product

 Add a new tank

 Delete a pump, etc

New Valve #
23!

1

2

3

4

5
6

8
7

17

18

1

9

11

12
13

1

6

1410

2

0

21

22

Storage

Tank 1

Storage

Tank 2

Storage

Tank 3

Cooking

Tank 3

Cooking

Tank 1

Cooking

Tank 2

#-105

Simplistic Solution

Function OpenReservedPath(StorageTank,CookingTank);

OpenValve(StorageTank.Outlet);

If (StorageTank.ID = 1 and CookingTank.ID = 3)

then OpenValve(Middle);

If (StorageTank.ID = 2 and CookingTank.ID = 2 and

Manifold.ID = Top)

then OpenValve(NewValve);

OpenValve(CookingTank.Inlet);

EndFunction;

1

2

3

4

5
6

8
7

1

7

1

8

1

9

1

1

1

2
1

3

1

6

1

4
1

0

2

0

2

1

2

2

Storag

e

Tank 1

Storag

e

Tank 2
Storag

e

Tank 3

Cookin

g

Tank 3

Cookin

g

Tank 1
Cookin

g

Tank 2

New Valve #
23!

#-106

1

2

3

4

5
6

9

8
7

11

12
13

1

6

15

1410

Invariants

Look for the invariants:

 The facts of valve, pumps,

tanks etc.

 A closed pipe will always

contain the same fluid

 A pump can move fluid

from one pipe to another

 If a valve is open between

two pipes, they behave

like a single pipe

 Closure

That is, the physics of fluids.

#-107

The Abstractions

1

1 1

1

11..*
*

1..*

1..*

1..*

1..*

11

1..*

1..*

Pipe Path Tank Inlet Valve

1..*

Valve
Pipe in

Path

Outlet

Valve

Pipe Connection Pipe Valve

#-108

The Behavior

 Each Pipe shares a
Connection with an
adjoining Pipe.

Connection

Pipe Pipe Valve

A D 5

D J 10

J K 15

H

E

C
B

GF

1

2

3

4

5
6

9

8
7

17

18

1

9

11

12
13

1

6

15

1410

2

0

21

22

A

KJ

D

I

 Each Connection has a
Pipe Valve.

11..*

1..*

Pipe Connection

#-109

Logic

To open a path from a storage tank to

a cooking tank:

Select a PipePath between the two tanks;

Find all the Pipes in the PipePath;

Find all the Connections between the

Pipes in each PipePath;

Find the PipeValve for each Connection;

Open each PipeValve;

Open the InletValve for the CookingTank;

Open the OutletValve for the StorageTank;

#-110

Resilient to Change?

 In the world, the addition of new valve #23 is small.

 In the old abstraction, the resulting change is huge.

 In the new abstraction, only the data changes.

Pipe Pipe Valve

A D1 5

D1 D2 23

D2 J 10

J K 15

 The change in the logic is none, absolutely none.

The dreaded
new valve

23. D1

D2

#-111

What Did We Learn?

Putting behavior in the tangible classes makes them

 large, and

 hard to understand

And leads to complex state models with duplicated behavior.

Phone

* Number

* On/Off hook

* Dialing

* Number being dialed

* Call Waiting

* Conference call number

* etc

#-112

What Did We Learn?

To avoid that, we:

 focus on associations

 find the invariant

 build classes that control dumb devices

Here’s another example:

#-113

Context

Type Speed Value

Acme 101 0-10 speed * 1.0

10-30 speed * 1.75

25-50 speed * 2

NewPumpCo No gearing

Pump ‘em 0-20 speed * 1

20-up speed * 3

The motors in some pumps require a “gearing factor”

depending on the desired final speed.

#-114

Changes

 The number of tiers

 The start and stop of each of the set points

 The variety and number of devices.

 Further idiosyncrasies of certain devices

Pump

Acme Pump NewPumpCo Pump ‘em

Good
approach?

#-115

Invariants

 There are tiers

 Each tier is a line (or a ray)

 No sense in overlap

10 20 30 40 50

NewGearCo

Pump ‘em

Acme101

1

2

3

Desired Speed

Ge
ar

in
g

Ra
tio

#-116

Abstractions

Abstract the tiers thus:

Tier Structure

Name

Tier

Structure Name

Start

Stop

Factor

1 1..*

Name

Acme 101

NewGearCo

Pump’em

Tier Structure Tier

Structure Start Stop Factor

Acme101 0 10 1

Acme101 10 27 1.75

Acme101 27 50 2

Acme101 50 None 0

NewGearCo 0 None 1

Pump’em 0 …. …..

……...

#-117

The Behavior

 Find the tier structure matching the pump type.

 Find the tier that contains the desired speed

 Compute desired speed * selected factor

 Send to the device

Hmmm….wouldn’t tiers
work for other

devices?

Other computations?

#-118

Impact of Requirements Changes

Name

Acme 101

NewGearCo

Pump’em

Nother Pump

Structure Start Stop Factor

Acme101 0 10 1

Acme101 10 27 1.75

Acme101 27 50 2

Acme101 50 None 0

NewGearCo 0 None 1

Pump’em 0 …. …..

Nother Pump 10 20 0.75

Nother Pump 20 45 1.75

Tier Structure Tier

Only if the tier
concept fails do
we need more

code 

#-119

Impact of Requirements Changes

Pump

Acme Pump NewPumpCo Pump ‘em ‘NotherPump

More pump
types mean
more code 

The impact is dependent on the

abstractions you select.

#-120

Remember!

 Beware of “-er” classes (e.g. Handler, Manager…)

 A good class model is simple and easily understandable

even to the subject matter newbie

 A more elaborate class diagram usually results in simpler

state models

#-121

Class Models

Class models capture:

 abstractions of the things in and around the system.

 Ideally the invariants, the things and concepts inherent

in the subject matter regardless of the current

requirements.

 associations between the instances of these abstractions.

 rules about the instance population at any point in time.

 a single subject matter.

 The granularity of reuse is the entire class diagram for a

subject matter, not individual classes.

#-122

Good Class Models

Good class models:

 Are easily understood by:

 Experts in the subject matter so they can

verify/dispute its correctness

 Those new to the subject matter so they can learn the

domain

 Expose more information on the class diagram to lead to

simpler state models.

 Expose information, not hide (“encapsulate”) it

#-123

#-124

6. State Models

6

#-125

Executable Model Hierarchy

Component Diagram
• Decompose the application

• Define Interfaces

Class Diagram
• Abstractions

• Operations

State Diagram
• Lifecycle

• Event handling

High

level

Low

level

#-126

State Models

Some instances progress through stages during their lifetime.

The collection of stages and the order of progression

constitutes its lifecycle.

It is represented as a state model, which may be captured as:

 a state diagram

 a state-event matrix

Open

ClosingOpening

Closed

Button

pushed

Door

closed

Arrive

at

floor

Door

opened

Button
pushed

Door
closed

Arrive
at floor

Door
opened

Open Closing

Closing Closed

Closed Opening

Opening Open

#-127

State Models

A state diagram comprises:

 States

 Transitions

 Events

 Activities

We’ll talk about each in turn.

Open

ClosingOpening

Closed

#-128

States

A state is an abstraction of a stage in an instance’s lifecycle.

WARNING: Many mathematical and object-oriented

texts use “state” to mean the values of all

the attributes.

Open

ClosingOpening

Closed

#-129

Transitions

A transition is a change from one state to another

(possibly the same) state.

Open

Closing

In Credit

#-130

Events

An event is an abstraction of a real-world incident that causes

the instance to move from one state to another.

Open

ClosingOpening

Closed

Button pushed

Door closedArrive

at floor

Door opened

#-131

Activities

An activity comprises a collection of actions that do something:

 Create and delete instances

 Read and write

attributes

 Create and

delete links

 Perform logic

and arithmetic

 Send events to

other state machines

Activities may execute on the transition or on entry to the state.

activity
activity

Open

ClosingOpening

Closed

Button

pushed

Door

closed

Arrive at

floor

Door

opened

activity

activity

activity

activity

activity

activity

#-132

Finding States

Enumerate the states you know.

If necessary, write a comment to describe the state further.

Open

Closing

Closed

Stuck

Idiot in Door

#-133

Blitz

A blitz is a technique for getting started.

There are no wrong answers.

 We don’t categorize

 We don’t organize

 We don’t evaluate

 We just enumerate

The purpose is to provide a starting point.

#-134

State Blitz

Look at all the candidates and categorize them.

 Definitely a state

 Maybe a state

 Definitely not a state

Open

Closing

Closed

Stuck

Idiot in Door

#-135

One State at a Time

An instance is in exactly one state at a time.

Choose states so that the instance is always in one state.

Open

Closing

Closed

#-136

Finding Transitions

Show the possible transitions from one state to another.

Open

ClosingOpening

Closed

Stuck

#-137

Finding Patterns

Cyclic

 Reusable resource such as equipment, link etc.

 Usually returns to a state in which nothing is happening,

named according to the subject matter

One shot

 Manage an action that takes time to complete

 No record of action is required (Born and Die)

 Record of action is required (Born and Quiescent)

#-138

Anthropomorphize

Take the perspective of an instance:

 How do I come into existence?

 What happens to me to cause

me to change state?

 Where do I go from here?

#-139

Workshop

Find and name the states for the Pub system shown at the

beginning of the section on classes.

Find and draw all the legal transitions.

#-140

Identify Events

For each transition, identify the event.

 Propose a name for the event

 Check all other event names

 If it’s the same (and means the same), good!

 If it’s not the same, should it be?

 Make event names consistent in structure

Door opened =

Open door =

Door open =?????

Open

ClosingOpening

Closed

Button

pushed

Door

closed

Arrive

at floor

Door

opened

D

#-141

Event Data

Events may carry data with them.

At floor

Moving

Checking requests

Floor Request(floorNumber)

Arrived at floor

Floor Request(

SelectedRequest.Floor)

No pending

requests

#-142

Anti-Pattern

The state diagram should reflect a lifecycle,

not a set of things to do.

At rest

Button pushed

Door closed

Arrive at floor

Door opened

#-143

Garage Door State Model

«Insert reference state model»

#-144

State Models

The process for building state models:

 Enumerate, name, and describe as necessary the states.

 Define the legal transitions through exhaustive

enumeration.

 Define an event for each transition, reusing existing events

as appropriate.

 Use comments to describe activities.

#-145

Workshop

For each transition in the Pub system:

 pick a name for the event that drives the transition

 add it to the diagram

Don’t forget to check the list of existing events.

#-146

Testing the State Model

A state-event matrix is used to check for completeness of a

state diagram.

It has:

 columns for events

 rows for states

Each cell contains:

 the name of the new state

 links to the activities

#-147

Testing the State Model

Establish whether there is a transition from each state to

every other state.

States

Events

#-148

Fill in the State-Event Matrix

Examine each cell and fill in the destination state.

What about the empty cells?

WARNING: Do NOT look at the diagram

#-149

Empty Cells

The empty cells can be:

 A transition you forgot 

Fill in the destination state

Go back the diagram and fix it too

 An event that occurs, but you don’t care 

Ignore it (“Event Ignored”)

 A logical impossibility 

Something has gone horribly wrong (“Can’t Happen”)

#-150

Event Ignored

An event can occur that you simply ignore.

#-151

Can’t Happen

An unexpected event can occur that likely indicates a:

 a software fault

 a hardware fault

You can’t do anything about it.

Use “Can’t Happen” for situations from that cannot be

recovered or handled by the application models.

If an undesirable event occurs, you have to handle it.

WARNING: “Can’t Happen” ≠

“Shouldn’t Happen”

#-152

Filling the State Event Matrix

#-153

Completed Diagram

You may add descriptions to any model element that relate the

model element to the subject matter under study.

#-154

Workshop

Fill in the state-event matrix for a state model that you

constructed.

For each cell (state x event), indicate whether it’s a:

 Transition to another (named) state,

 Ignore,

 can’t happen or

 shouldn’t happen

#-155

#-156

7. Activities

7

#-157

Executable Model Hierarchy

Component Diagram
• Decompose the application

• Define Interfaces

Class Diagram
• Abstractions

• Operations

State Diagram
• Lifecycle

• Event handling

Activities
• Processing

High

level

Low

level

#-158

Activities

An activity is a block of model-level logic comprising a collection

of actions that can:

 Create and delete instances

 Read and write

attribute values

 Compute new values

 Generate events

 Link and unlink associations

between instances

 Select instances across

associations

 Find instances based on attribute values

 Communicate with the outside world

#-159

Activities

You can place an activity pretty much anywhere.

In the context of a state model, that means

 on a transition

 on entry to a state

activity

Open

ClosingOpening

Closed

Button

pushed

Door

closed

Arrive at

floor

Door

opened

activity activity

activity

activity

activity

activity

activity

#-160

Activities on Transitions

You can associate an activity with a transition.

activity

Open

Closing

Button

pushed

It completes before

any other activity is

executed for this

state machine.

#-161

Activities on Entry

You can associate an activity with entry to a state.

The activity executes on

entry to the state.

After the transition activity,

if any.

activity

Open

Closing

Button

pushed

entry/

activity

#-162

Event Data

Activities are handed parameters with the event.

When the activity terminates, only object data remains.

You can think of an

activity as a routine

with input parameters

and side-effects

only

At floor

Moving

Checking

requests

Floor

Request(floorNumber)

Arrived at floor

Floor Request(

SelectedRequest.Floor)

No pending

requests

#-163

Execution Sequence

 An activity is executed on the transition

 Another activity is executed

on entry to the state

 Both activities must complete before accepting

another event

 Both activities must complete before the instance

may be considered to be in the next state

This is commonly called
run-to-completion

semantics
Open

activity Button

pushed

Closing entry/

activity

#-164

Event Dispatch

Event delivery causes one of:

 Transition

 Ignore

 Can’t Happen

Transition:

 Execute activity on transition

 Execute activity within state

 Change current state

Ignore:

 Event is discarded,

no state change, no actions

Can’t Happen:

 System-level recovery invoked

#-165

Activities on SEMs

Each cell may contain a reference to the activity

to be executed on the transition.

#-166

Activities

Activities can be placed anywhere:

 on transitions

 on (entry to) states

 on operations of classes

We describe the activity using an

action language.

activity

Open

Closing

Button

pushed

entry/

activity

#-167

Workshop

Construct a state model for each class in the GPS Watch that

has a lifecycle.

Indicate the location of activities.

Describe each activity in natural language.

#-168

8. Action Language

8

#-169

Object Action Language [OAL]

Object Action Language is a concrete syntax that implements

the UML standard.

OAL is complete enough to be executable, but abstract enough

that it does not prescribe implementation specifics.

create object instance request of REQ;

select one channel related by device->CHAN[R100];

device.priority = lastpriority + 1;

generate CHAN11:'host relinquish' to channel;

#-170

OAL Does…

Object Action Language can:

 Create and delete instances

 Read and write attribute values

 Compute new values

 Generate events

 Link and unlink associations

between instances

 Select instances across

associations

 Find instances based on

attribute values

 Communicate with the outside world

And control when these actions take place.

#-171

Data Types

Core primitive data types

 boolean

 integer

 real

 string

 unique_id

Reference data types

 instance handle

 instance handle set

 event instance

 component instance handle

All data items are implicitly typed

by the value assigned to them

on their first use within an action.

Built-in user-defined types

 date

 timestamp

 timer handle

#-172

Operators

In addition to the usual operators:

 empty [<instance handle> | <instance handle set>]

 cardinality [<instance handle> | <instance handle set>]

 not <boolean>

#-173

Loops

Use foreach to iterate over a collection.

while loops

 can be nested.

 define a local scope.

for each mobile in mobiles

// do something

end for;

i = 0;

while (i < 4)

// do something

i = i + 1;

end while;

#-174

Parameters

 Event and operations carry parameters

 Parameters are tagged, not positional.

 param is a pre-pended keyword to access arguments

select any probe from instances of SP where

selected.probe_ID == param.probe_id;

trackPoint.latitude = param.latitude;

#-175

Relate / Unrelate Statement

Link specific instances of classes using relate.

Local instance

reference variable
Association ID

unrelate mobile from call across R1.’is busy on’;

Local instance reference variable

relate mobile to call across R1.’is busy on’;

#-176

Select Any / Many

Key letters

select many mobiles from instances of MEQ

where selected.serialNumber > 10000;

Local instance reference variable

Where clause

select any mobile from instances of MEQ;

#-177

Select One / Many … Related By

 Select one requires the use of the related by clause

 Self is the instance of the class that originates an action

select one timer related by self->

WorkoutTimer[R4.is timed by’];

Local instance

reference variable

Key letters Association

phrase

Originating

class instance

#-178

Workshop

Write OAL for the activity that completes the goal, specifically:

 Move the just-completed goal from ‘Currently executing’

(R11) to ‘Executed’ (R12)

 Create a new goal based on the next one in sequence

 Associate the newly created goal with the currently

executing goal

#-179

#-180

9. Distribution of Intelligence

9

#-181

Tangible Things

Tangible things rarely have interesting lifecycles.

They are driven by classes that

capture behavior.

You must distribute intelligence

among the classes.

#-182

Complex State Model

get dial tone

callee hangs up/

Idle

do/play
dial tone

do/play
message

Dialing

do/play
message

do/ play
ringing tone

Talking

Pinned

do/ play
busy tone

Invalid

Busy

Connecting

DialTone

Timeout

Ringing

lift receiver/

disconnect

15 sec.

dial digit(n)

dial digit(n)

[invalid]

dial digit(n) [valid] /

connect

connectedbusy

callee answers/ enable speech

callee

hangs up
callee

answers

dial digit(n)

[incomplete]

phone #

Active

15 sec

#-183

Simpler Communicating State Models

do/ play

ringing tone

Talking

Pinned

do/ play
busy tone

Busy

Connecting

Ringing

connectedbusy

callee answers/

callee

hangs up
callee

answers

enable speech

get dial tone

callee hangs up/

Idle

do/play

dial tone
Dialing

do/play

message

do/play

message

Invalid

DialTone

Timeout

lift receiver/

disconnect

15 sec.

dial digit(n)

dial digit(n)

[invalid]

dial digit(n) [valid] /

connect

dial digit(n)

[incomplete]

phone #

Active

15 sec

Making Call

Entry/Signal

Create Call

Create Call

#-184

Patterns

There are two control patterns that occur frequently:

 Top-driven: where a user/operator drives behavior

 Bottom-driven: where a device/hardware drives behavior

And two patterns based on factoring data:

 Push-and-pull: Data is pushed in, and pulled out

 Pivot: The pivot is the place where

the data comes “to rest”

#-185

Top-Driven

In a top-driven pattern, a user/operator drives behavior.

Examples:

 Microwave oven

 Chemical plant operations

 Phone calls Oven

Cook

Cooking Step

Magnetron

Start

StartStep FinishStep

TurnON TurnOff

#-186

Bottom-Driven

In a bottom-driven pattern, a device/hardware drives behavior.

Examples:

 Meter Reading

 Alarm System

 Satellite

Meter

Account

Reading

EndOfMonth

ReadingTaken

Bill

ReadingVerified

PrintBill

#-187

Push-and-Pull

In push-and-pull, data is

 pushed so far, then

 rests, then is

 pulled the rest of the way

Examples:

 Meter Reading

 Order fulfillment

 Message accumulation

Meter

Account

Reading

EndOfMonth

ReadingTaken

Bill

ReadingVerified

PrintBill

#-188

Pivot

The trick with push-and-pull is to find the pivot.

Reading Account

Bill

1..*

1..*

1

1

Readings are “pushed”

to the Account when

read, then “pulled” by

the Bill when it’s time.

#-189

Associations

Associations often carry interesting behavior.

Does the cow demilk itself? Or the milk uncow itself? Neither!

Milking

• Cow ID

• Urn ID

• Time

#-190

Anti-pattern

Avoid controller/manager state models that control everything.

Factory

Valve

Pump

Open Close

TurnON TurnOff

#-191

Completeness

If you followed the process, your state models are complete.

Check the model for completeness anyway.

 Does every event have (a) source(s)?

 Does every event have (a) destination(s)?

 Does each state model have all the events it needs?

#-192

Workshop

Based on what you just learned, review and revise your state

models to improve the distribution of intelligence.

Be prepared to describe your approach for distribution

intelligence to the class.

#-193

#-194

10. Model Execution

10

#-195

State Machines

A state machine is a copy of a state model for each instance,

each of which has its own state.

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

start

cook

Not Cooking
start

stop

Cooking

Checking

Oven

finish_step

Cooking Step 1

Cooking Step 2

#-196

State Machines

 Each class has a state model.

 Each instance has a state machine.

start

cook

Not Cooking
start

stop

Cooking

Checking

Oven

finish_step

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

Cooking Step 1

Cooking Step 2

#-197

 All instances execute

concurrently.start

cook

Not Cooking
start

stop

Cooking

Checking

finish_step

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

Oven

Cooking Step 1 Cooking Step 2

Concurrent Execution

#-198

Executing the Model

The model executes in response to events from:

 the outside,

 timers

 other instances as

they execute

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

#-199

Communication

State machines drive each other through their lifecycles by

sending each other events.

 Events are reliable

 Events do not interrupt

executing activities

start

cook

Not Cooking
start

stop

Cooking

Checking

finish_step

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

Oven Cooking Step 1

Activities run-to-
completion

#-200

start

cook

Not Cooking
start

stop

Cooking

Checking

finish_step

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

Oven Cooking Step 1

Communication

1. Start in Checking and Ready states

2. Accept event ‘Cook’

3. Change to Cooking State

4. Generate ‘startStep’ signal

5. Change to Executing state

#-201

Run-to-Completion ≠ Atomic!

Other state machines (and their activities) run concurrently

 An activity can be pre-empted during execution

 One state machine may change the data

accessed by another

Or, you can set a global switch to prevent activities from pre-

empting one another.

An object

Activity A Activity B

Which one will

came first?

No guarantees!

#-202

Synchronization

State machine instances are coordinated by sending signals.

A

instance

C

instance

B

instance

A2
B1

A1

The order of arrival of A1 and B1 at C is indeterminate,

even if A1 was generated first.

#-203

Time

 Time is relative to each observer

start

cook

Not Cooking
start

stop

Cooking

Checking

finish_step

startStep

finishStep

Ready

interrupt

finishStep

Complete

Executing

Oven Cooking Step 1

#-204

Timers

A timer can generate an event.

 With a delay (e.g. in 10 seconds)

 The delay specified is a minimum

 You may cancel a timer

 But the event may already be “in flight”

 You have to account for that case.

#-205

Summary

 Build models relying only on the execution rules of xtUML

 Build (or buy) a model compiler that implements these

rules for your target

 Understand the trade-off between model portability and

exploitation of platform-specific characteristics

 Make deliberate, explicit decisions and document them

clearly

#-206

Workshop

Get Pub state machines from your instructors.

Label instances of Patron, “Hugo”, “Debbie”, “Tiny”, “Zoltan”.

Place coins on the initial states of each state machine:

• Patron Hugo: Outside

• Patron Debbie: Drinking

• Patron Tiny: Drinking

• Patron Zoltan: Needs Drink

• Snooker Table 1: Available

and walk through their lifecycles as shown on the next page.

#-207

Workshop

Inject the following events and change states appropriately:
Patron 1: Thirsty to Patron Tiny

Patron 1: Thirsty to Patron Hugo

Patron 2: Served to Patron Zoltan

Patron 3: Bored to Patron Zoltan

Patron 2: Served to Patron Tiny

Player 1: Look for Table to Player Zoltan

Patron 2: Served to Patron Hugo

Patron 3: Bored to Patron Debbie

Patron 1: Thirsty to Patron Tiny

Player 1: Look for Table to Patron Debbie

Player 2: Found Table to Patron Zoltan

Player 2: Found Table to Patron Debbie

Patron 2: Served to Patron Tiny

Patron 1: Thirsty to Patron Tiny

Patron 2: Served to Patron Tiny

SnookerTable2:LastBallPlayed to Table 1

Patron 1: Thirsty to Patron Zoltan

Patron 5: Sated to Patron Debbie

Patron 1: Thirsty to Patron Tiny

#-208

Workshop

Expected Post-conditions:

 Patron Hugo: Drinking

 Patron Debbie: Outside

 Patron Tiny: NeedsDrink

 Patron Zoltan: NeedsDrink

 Snooker Table 1: Available

#-209

#-210

11. Components and Interfaces

11

#-211

Components

A component is a part of a system that hides its implementation

behind ports.

The inside of a component can “see” the outside only through

its ports.

Components and ports are named.

Port

#-212

Ports

Each port …

… surfaces an interface …

… by referencing an interface definition.

Actions within a component specify through which port any

outgoing messages should be sent.

Port name

Interface Definition

Messages {

#-213

Interfaces

An interface defines of collection of messages, similar to a

declaration in a programming language.

Each interface is defined once,

and may be used multiple times.

Each message can carry

typed parameters.

#-214

Messages

Messages have a direction

(relative to/from the provider).

The ball indicates the provider.

The arrow indicates the direction

of the message in an

interface definition.

#-215

Port Activity

Each message (in the interface, connected to a port) may have

a port activity executed when the message is received.

It may contain any actions valid within the context of the

receiving component. Best to keep port activities simple:

 invoke an operation

 generate an event to an instance

#-216

Provided vs. Required Interfaces

A provided Interface allows a component

to provide services to other components.

A required Interface allows a component to

demand services from another component.
Provided

Required

#-217

Workshop

Draw the Component Diagram for this system.

Define all the interfaces.

Write at least one port activity.

#-218

Bridges

Another form of synchronous operation is a bridge. It:

 Takes parameters

 Can be wired to external code or defined with OAL

It is used for library functions

 Time

 Logging

 Math

And for scaffolding

 OAL or Java for Verifier

 Hand-written code for target

#-219

Ports vs Bridges

Favor Components and ports except…

 When surfacing connections between elements is

unnecessary or unhelpful

#-220

12. Model-Driven Testing

12

#-221

Test case

Model-Driven Testing

Model-driven testing is the notion that you can use

models to build tests.

#-222

Types of Testing

There are two types of tests. Those that

are coupled

only to the

interface

include

knowledge of

the models

owned by the Q&A

(and anyone focused on

the what not the how)

owned by the modelers

#-223

Black-Box Testing

Black-box testing tests the system from the outside.

Black-box testing knows only:

 what the actor wants from the system

 the interface

It treats the system as a “black box”.

Test case

Models

Under

Test

Provided

Required

#-224

White-Box Testing

White-box testing tests the system from the inside.

Advantages of white-box tests include:

 Increased visibility and access, enabling

 finer-grained, more detailed testing

 Often simpler to build

Test case

Provided

Required

#-225

White-Box Tests

White-box testing is all about the models. They can:

 Create and delete instances

 Access attributes and association links

 Anything you can do to a model

Test case

Provided

Required

#-226

Use Cases

A use case says how a role uses a system to meet some goal.

Therefore, the use case becomes the basis for building tests.

Testing requires:

 Preconditions

 Stimulus

 (Expected) Postconditions

 (Actual) Postconditions

 A determination

You have these from the

use cases.

(Except for the last two!)

#-227

Testbench

A testbench supplies:

• The test execution framework

• Models of things outside the system

• Models of pieces of the system that are not yet available

• The test suite

Test Bench

We must model what is

around the system.

#-228

Testing Structure

Soooooo, create a:

 Test bench component with appropriate interfaces, then

 Connect it to the components under test

Test Bench

Models

Under

Test

Provided

Required

#-229

Use a Model

Use action language functions to establish preconditions, inject

the initial stimulus and verify postconditions.

When necessary, use state models to

 inject additional stimuli,

 receive responses from

models under test,

 Detect completion

Setup

create object instance FredsPlace of Pub;

FredsPlace.Name = "FredsPlace";

create object instance table of SnookerTable;

table.Number = 37;

table.available = true;

relate FredsPlace to table across R4.contains;

create object instance Tiny of Patron;

Tiny.Name = "Tiny";

…..

#-230

Workshop

Build a modeled test case, covering UC01 for the GPS Watch.

#-231

#-232

13. What’s Next?

13

#-233

Executable Model Hierarchy

Component Diagram
• Decompose the application

• Define Interfaces

Class Diagram
• Abstractions

• Operations

State Diagram
• Lifecycle

• Event handling

Activities
•Processing

High

level

Low

level

#-234

What’s Next?

• Motivational Discussion

• Tool Introduction

• Requirements Clarification

• Basic xtUML Modeling

• Tool Training

• Completion of Case Study Model

• Team Modeling Exercise

• Advanced xtUML Modeling

You are here

#-235

Workshops

How to be most effective in workshops?

 Bridgepoint?

 No. Focus is on modeling.

 Post-it notes?

 Yes. Easy to move around, delete, rewrite

 Use them for classes, states, components

 Flipcharts?

 Yes. Good for collaboration.

 Use for model canvas; post-it notes + drawn lines

 Phone cameras?

 Useful for capturing prior versions

