
#-1 • xtUML and BridgePoint: Execution Rules

The xtUML method - Verification
♦  Analysis – questioning, thinking, sketching...

●  Descriptive UML diagrams
–  use case, sequence, ...

♦  Executable Modeling – formalizing the analysis:
●  Component Diagrams (partitioning/interfaces)

●  Class Diagrams (data)

●  State Machines (control)
●  Activities (processing)

♦  Verification
●  Interpretive Model Execution

♦  Code generation
●  Template and Rule-Based Translation

#-2 • xtUML and BridgePoint: Execution Rules

Execution Rules

♦  Bottom Up
●  Types of actions
●  Homes for actions
●  State models
●  Event delivery
●  Event ordering
●  Delayed events
●  Concurrency
●  Interface messages
●  Bridges

#-3 • xtUML and BridgePoint: Execution Rules

Types of Actions

♦  create, delete instances
♦  read, write attributes
♦  read parameter values
♦  relate, unrelate instances
♦  invoke operations, set parameter values
♦  send events, set parameter values
♦  find instances
♦  computation
♦  create, read, write local variables
♦  control: iterate, loop, decision

 Do we need anything else?

#-4 • xtUML and BridgePoint: Execution Rules

Homes for Actions

♦  States
♦  Transitions
♦  Operations

●  Instance-based
●  Class-based

♦  Ports
♦  Mathematically-derived

attributes
♦  Bridge Operations
♦  Functions

#-5 • xtUML and BridgePoint: Execution Rules

State Models

♦  Capture lifecycles in state models
●  Instance-based vs. Class-based

♦  Start by naming the states
♦  Define the legal transitions
♦  Associate events with transitions
♦  Actions take finite time
♦  Transitions are considered instantaneous
♦  All state machines execute concurrently
♦  Synchronous creation

●  No actions executed
●  Lowest numbered state

♦  Asynchronous creation
●  Action executed
●  Destination state for creation transition

♦  Final state

#-6 • xtUML and BridgePoint: Execution Rules

State Dispatch

♦  Event delivery causes one of:
●  Transition
●  Ignore
●  Error (“Can’t Happen”)

♦  Transition:
●  Execute actions on transition
●  Execute actions within state
●  Change current state

♦  Ignore:
●  Event is discarded, no state change, no

actions
♦  Error:

●  System-level (as opposed to modeled)
recovery invoked

#-7 • xtUML and BridgePoint: Execution Rules

Event Delivery

♦  Events are reliable
♦  Events do not interrupt executing actions
♦  Order is preserved among sender/receiver pair
♦  Self-directed events are delivered before others
♦  Delayed events specify minimum delay

●  Time EE provides timer operations and real-time clock
♦  Currently:

●  No guards
●  No re-queuing
●  No peeking or selecting among multiple events

#-8 • xtUML and BridgePoint: Execution Rules

Concurrency

♦  All state machines execute
concurrently

♦  Models of concurrency may vary
♦  Full concurrency

●  Actions on transitions and within
states may preempt others

●  Models must ensure data integrity
♦  Interleaved

●  Preemption occurs only on state
boundaries

●  Models may assume state
atomicity

♦  Consistent Data Access Set
●  Like full concurrency
●  Models may assume consistent

data access set

#-9 • xtUML and BridgePoint: Execution Rules

Interface Messages

♦  Provide inter-component communication
♦  Carry parameters
♦  Asynchronous Signals

●  May be mapped to class-based events
♦  Synchronous Operations

●  Future: May be mapped to class-based
operations

♦  Use actions in ports to define behavior

#-10 • xtUML and BridgePoint: Execution Rules

Bridges

♦  Another form of synchronous operation
●  Takes parameters
●  Can be wired to external code or defined with

OAL
♦  Use for library functions

●  Time
●  Logging
●  Math

♦  Use for scaffolding
●  OAL or Java for Verifier
●  Hand-written code for target

#-11 • xtUML and BridgePoint: Execution Rules

Summary

♦  These rules represent a 'contract' between the world of
analysis and the world of implementation

♦  The architecture undertakes to implement dynamic
behavior according to the agreed semantics.

