
#-1 • xtUML and BridgePoint: Code Generation

The xtUML method – Code Generation
♦  Analysis – questioning, thinking, sketching...

●  Descriptive UML diagrams
–  use case, sequence, ...

♦  Executable Modeling – formalizing the analysis:
●  Component Diagrams (partitioning/interfaces)

●  Class Diagrams (data)

●  State Machines (control)
●  Activities (processing)

♦  Verification
●  Interpretive Model Execution

♦  Code generation
●  Template and Rule-Based Translation

#-2 • xtUML and BridgePoint: Code Generation

Code Generation

xtUML
Database

Translation
Rules

Model
Compiler

C Source
Code

xtUML
Database

Translation
Rules

Markings Markings

Model
Compiler

C Source
Code

#-3 • xtUML and BridgePoint: Code Generation

Generating Classes

struct Tracking_TrackPoint {
 /* application analysis class attributes */
 i_t time; /* - time */
 r4_t longitude; /* - longitude */
 r4_t latitude; /* - latitude */
 r4_t speed; /* - speed */
 /* relationship storage */
 /* Note: No storage needed for TrackPoint->TrackLog[R1] */
 Tracking_TrackPoint * mc_TrackPoint_R2_follows;
 Tracking_TrackPoint * mc_TrackPoint_R2_preceeds;
 /* Note: No storage needed for TrackPoint->TrackLog[R3] */
};

Tracking_Trackpoint_class.h

Tracking:Class Diagram

#-4 • xtUML and BridgePoint: Code Generation

Translation Rules

struct <class name>_s {
 <attr1 type> <attr1 name>; /* <attr1 description> */
 <attr2 type> <attr2 name>; /* <attr2 description> */
 <attr3 type> <attr3 name>; /* <attr3 description> */
 . . .
/* Association storage */
 <ref1 class name>_s * < ref1 class name >_<assoc1 number>;
 <ref2 class name>_s * < ref2 class name >_<assoc2 number>;
 . . .
 /* State machine current state */
 StateNumber_t current_state;
};

struct Tracking_TrackPoint {
 /* application analysis class attributes */
 i_t time; /* - time */
 r4_t longitude; /* - longitude */
 r4_t latitude; /* - latitude */
 r4_t speed; /* - speed */
 /* relationship storage */
 /* Note: No storage needed for TrackPoint->TrackLog[R1] */
 Tracking_TrackPoint * mc_TrackPoint_R2_follows;
 Tracking_TrackPoint * mc_TrackPoint_R2_preceeds;
 /* Note: No storage needed for TrackPoint->TrackLog[R3] */
};

#-5 • xtUML and BridgePoint: Code Generation

State Machine Generation

state = instance->current_state;
next_state = Tracking_Workout_Timer_StateEventMatrix[state]
[event_number];
/* Update state and execute the state action */
instance->current_state = next_state;
(*Tracking_Workout_Timer_Actions[next_state])(instance, eventData);
 . . .

Tracking_Workout_Timer

#-6 • xtUML and BridgePoint: Code Generation

Translation Rules: Event Dispatch

. . .
state = instance->current_state;
next_state = <class name>_StateEventMatrix[state][event_number];
/* Update state and execute the state action */
instance->current_state = next_state;
(*<class name>_Actions[next_state])(instance, eventData);
 . . .

. . .
state = instance->current_state;
next_state = Tracking_Workout_Timer_StateEventMatrix[state]
[event_number];
/* Update state and execute the state action */
instance->current_state = next_state;
(*Tracking_Workout_Timer_Actions[next_state])(instance, eventData);
 . . .

#-7 • xtUML and BridgePoint: Code Generation

Generated Code structure

Next_state = <class name>_StateEventMatrix[state][event_number];

(*<class name>_Actions[next_state])(instance, eventData);

♦  StateEventMatrix contains next state for
each current state and input event.

♦  Actions is an array of function pointers to
the generated action code for the state
itself.

♦  One Procedure for each state machine,
and they all are essentially the same –
Only the class name is unique.

#-8 • xtUML and BridgePoint: Code Generation

Markings

♦  Contained in the gen folder.
♦  .mark files control details of the code generation.
♦  6 mark files available.

 System, domain, class, event, bridge, datatype

#-9 • xtUML and BridgePoint: Code Generation

Useful Markings

♦  MarkActionStatementTracingOn() in domain.mark
 MarkActionStatementTracingOn is used to enable the generation of trace macros
into the generated code that will output run-time trace statements of the Object
Action Language statements executed during the run.

♦  MarkInitializationFunction("comp", "fname") in domain.mark
 Designate a function to serve as an initialization function in a domain.

♦  TagDataTypePrecision("domain", "dt_name", "tagged_name",
"initial_value") in datatype.mark
 To indicate the 'precision' of a user defined data type. (e.g. double)

#-10 • xtUML and BridgePoint: Code Generation

Performing Code Generation

♦  Use the C/C++
Perspective in Eclipse
and Build Project.

♦  Batch generation:
xtumlmc_gen_erate
●  -import xtUML_file
●  -nopersist
●  -v verbosity
●  -f output_filename

#-11 • xtUML and BridgePoint: Code Generation

Document Generation

♦  Generate HTML Documentation from your models.

