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Traditional Development Process 
Customer requirements 

System  

Specification 

Specification review 

Delivery 

Test & Verification 

Implementation Integration & deployment 

Code review    

C/C++ 
  Java 

Defect 
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Levels of Commitment 

1.  Natural language and informal diagrams 
§  Use case, sequence diagrams etc. 

2.  Structural models 
§  Interconnected components 
§  Interfaces 
§  Data types 

3.  Passive class models 
§  Classes 

4.  Behavioral models 
§  State machines 
§  Active ports 
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Natural Language and Informal Diagrams  

  
♦   Common tool environment 
♦   Well known concepts 
♦   Report generation 
 
 

Sequence Diagram 

Activity Diagram 

Use Case Diagram 
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Structural Models 

Interface: workout Data type: GPS 

Component: Watch 

System level 
interfaces 
declare 
messages that 
carry data 

System level 
data types 

Interfaces are 
provided and 
required by 
components 

Data types 
are used in 
component 
design 
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Structural Models 

♦   Work that is already being done 
♦   No inconsistencies – one source of information 
♦   Reuse of components, interfaces and data types 
♦   Model diff reveals communication changes 
♦   Allow informal models to be formalized 
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Passive Class Models 

Component: Watch 

Class Diagram: Tracking 



#-7  •  xtUML and BridgePoint: Code Generation 

Passive Class Models 

♦   Significantly improves impact analysis 
♦   Class model reuse 
♦   Reachable with no risk and little effort 
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Behavioral Models 

Component: Watch 

Class Diagram: Tracking 

State Chart: Track Log 
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Behavioral Models 

♦   Forced to deal with the hard questions up front 
♦   Execution reveals defects early  
♦   Can be introduced in small portions 
♦   Reuse behavioral models in design phase 
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Sumo Robot Competition – Round 3 
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UML 2.0 Component Definition 

♦  A modular part of a system design that hides its 
implementation behind a set of external interfaces 

♦   Within a system, components satisfying the same set of 
interfaces may be substituted freely 
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Components and Substitution 

♦   A component may be: 
●   Behavioral system level component 
●   Implementation component 
●   Test stub 
●   External code 
●   Others… 
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Refining the model for code generation 

System spec Implementation Test stub 
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Improved Development Process 

Customer requirement 

Application 

Specification 

Spec. review 

Delivery 

Test & Verification 

Implementation Integration & deployment 

Code review    

C/C++ 
  Java 

Defect removal 
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Conclusions 

♦  Executable specs can be introduced in small increments in 
existing modeled or non-modeled systems 

♦   Verification takes place early when recovery is cheap 
●   Increase productivity and improve quality 

♦   Executable specs are unambiguous  
♦   System level models may be reused in design phase 

●   Minimal handover 
●   Bridge the gap between system and design 


