
#-1 • xtUML and BridgePoint: Code Generation

Traditional Development Process
Customer requirements

System

Specification

Specification review

Delivery

Test & Verification

Implementation Integration & deployment

Code review

C/C++
 Java

Defect

#-2 • xtUML and BridgePoint: Code Generation

Levels of Commitment

1.  Natural language and informal diagrams
§  Use case, sequence diagrams etc.

2.  Structural models
§  Interconnected components
§  Interfaces
§  Data types

3.  Passive class models
§  Classes

4.  Behavioral models
§  State machines
§  Active ports

#-3 • xtUML and BridgePoint: Code Generation

Natural Language and Informal Diagrams

♦  Common tool environment
♦  Well known concepts
♦  Report generation

Sequence Diagram

Activity Diagram

Use Case Diagram

#-4 • xtUML and BridgePoint: Code Generation

Structural Models

Interface: workout Data type: GPS

Component: Watch

System level
interfaces
declare
messages that
carry data

System level
data types

Interfaces are
provided and
required by
components

Data types
are used in
component
design

#-5 • xtUML and BridgePoint: Code Generation

Structural Models

♦  Work that is already being done
♦  No inconsistencies – one source of information
♦  Reuse of components, interfaces and data types
♦  Model diff reveals communication changes
♦  Allow informal models to be formalized

#-6 • xtUML and BridgePoint: Code Generation

Passive Class Models

Component: Watch

Class Diagram: Tracking

#-7 • xtUML and BridgePoint: Code Generation

Passive Class Models

♦  Significantly improves impact analysis
♦  Class model reuse
♦  Reachable with no risk and little effort

#-8 • xtUML and BridgePoint: Code Generation

Behavioral Models

Component: Watch

Class Diagram: Tracking

State Chart: Track Log

#-9 • xtUML and BridgePoint: Code Generation

Behavioral Models

♦  Forced to deal with the hard questions up front
♦  Execution reveals defects early
♦  Can be introduced in small portions
♦  Reuse behavioral models in design phase

#-10 • xtUML and BridgePoint: Code Generation

Sumo Robot Competition – Round 3

#-11 • xtUML and BridgePoint: Code Generation

UML 2.0 Component Definition

♦  A modular part of a system design that hides its
implementation behind a set of external interfaces

♦  Within a system, components satisfying the same set of
interfaces may be substituted freely

#-12 • xtUML and BridgePoint: Code Generation

Components and Substitution

♦  A component may be:
●  Behavioral system level component
●  Implementation component
●  Test stub
●  External code
●  Others…

#-13 • xtUML and BridgePoint: Code Generation

Refining the model for code generation

System spec Implementation Test stub

#-14 • xtUML and BridgePoint: Code Generation

Improved Development Process

Customer requirement

Application

Specification

Spec. review

Delivery

Test & Verification

Implementation Integration & deployment

Code review

C/C++
 Java

Defect removal

#-15 • xtUML and BridgePoint: Code Generation

Conclusions

♦  Executable specs can be introduced in small increments in
existing modeled or non-modeled systems

♦  Verification takes place early when recovery is cheap
●  Increase productivity and improve quality

♦  Executable specs are unambiguous
♦  System level models may be reused in design phase

●  Minimal handover
●  Bridge the gap between system and design

