
#-1 • xtUML and BridgePoint: Components

The xtUML method - Building Component Diagrams
♦  Analysis – questioning, thinking, sketching...

●  Descriptive UML diagrams
–  use case, sequence, ...

♦  Executable Modeling – formalizing the analysis:
●  Component Diagrams (partitioning/interfaces)

●  Class Diagrams (data)
●  State Machines (control)
●  Activities (processing)

♦  Verification
●  Interpretive Model Execution

♦  Code generation
●  Template and Rule-Based Translation

#-2 • xtUML and BridgePoint: Components

UML 2.0 Component Definition

♦  A modular part of a system design that hides its
implementation behind a set of external interfaces

♦  Within a system, components satisfying the same set of
interfaces may be substituted freely

#-3 • xtUML and BridgePoint: Components

Component Packages

♦  Packages are a diagrammatic way to group modeling
elements together and manage their hierarchy.

♦  Components are defined in packages.

♦  Packages can be nested.

♦  Component packages may contain other component
packages and/or interface packages.

♦  Interfaces also are organized in packages.

♦  This allows a level of organizational association between
components and their interfaces.

#-4 • xtUML and BridgePoint: Components

Interfaces
♦  An interface is a declaration of a collection of synchronous

and asynchronous messages

♦  Managed separately from components

♦  Components implement Interfaces

♦  The separation also allows more than one component to
implement (require or provide) any particular interface.

♦  Interfaces can be resolved from a different hierarchical path in
the project and reused.

♦  Implementation can be specified at the individual component
port and is unique for each component.

#-5 • xtUML and BridgePoint: Components

Interface Editor

♦  Three sections in graphic
●  Name
●  Operations

–  Synchronous message
–  Operation completes

before further execution
–  Can carry return values

●  Signals
–  Asynchronous message
–  Execution resumes

immediately after signal
sent

–  No return value

#-6 • xtUML and BridgePoint: Components

Provided vs. Required Interfaces

♦  Provided Interface
●  “The Ball”
●  Allows a component to provide

services
 to other components

♦  Required Interface
●  “The Cup”
●  Allows a component to demand

services from another component

♦  Ports provide a name.
●  Necessary if an interface is multiply

used.

Provided

Required

#-7 • xtUML and BridgePoint: Components

Formal Interfaces

♦  When an interface is added it is not
named or formalized.

♦  Name interface for clarity

♦  Formalize to interfaces declared in
interface packages.

♦  Interfaces must be
formalized to pass
messages.

#-8 • xtUML and BridgePoint: Components

Termination of Interface Messages

♦  Signal (async message) between two connected components:
●  Class based state machine (mapped event), or
●  Receiving port

♦  Signal sent from single component

●  Sending port

♦  Operation (sync message) between two connected components:
●  Receiving port

♦  Operation invoked from single component:

●  Sending port

#-9 • xtUML and BridgePoint: Components

Component Views

Interfaces
on

Ports

Models
wired

graphically

Provided Interface

Interface
Definition

Non xtUML -Modeled
Components

#-10 • xtUML and BridgePoint: Components

Nesting Components

♦  Internal interfaces

♦  Delegation
●  Provided and required

interfaces to Parent
Component

♦  Leaf components:
●  xtUML models

–  Class,
–  State Machine
–  Actions

●  Legacy code

#-11 • xtUML and BridgePoint: Components

Component References (vs. Definitions)

♦  Placeholder for a component.

♦  Allows for multiple
implementations to be
swapped conveniently.

♦  Multiple configurations with
different components in
Verifier.

 Purple Glyph

#-12 • xtUML and BridgePoint: Components

Lab 1: Exercises 2, 3

♦  Continue embellishing the model with components and
interfaces to capture communication boundaries.

