
#-1 • xtUML and BridgePoint: Class Modeling

The xtUML method - Building Class Diagrams
♦  Analysis – questioning, thinking, sketching...

●  Descriptive UML diagrams
–  use case, sequence, ...

♦  Executable Modeling – formalizing the analysis:
●  Component Diagrams (partitioning/interfaces)

●  Class Diagrams (data)

●  State Machines (control)
●  Activities (processing)

♦  Verification
●  Interpretive Model Execution

♦  Code generation
●  Template and Rule-Based Translation

#-2 • xtUML and BridgePoint: Class Modeling

Class Diagrams

♦  Identify the types of object the component is concerned with
and draw them as classes.

♦  Abstract the characteristics that define the classes; these are
the class attributes.

♦  The choice of classes and attributes depends on the purpose
of the component.

♦  Draw associations to represent real world relationships that
exist between objects.

♦  During execution, instances of these classes and associations
will be created as necessary to represent the real world.

#-3 • xtUML and BridgePoint: Class Modeling

Some Common ‘Types' of Classes

♦  Tangible objects
●  Laser, Mirror, Motor...

♦  Roles:

●  User, Customer, Peripheral,...

♦  Discovered classes:
●  Account, Packet header, Proxy,...

♦  Incident:

●  Button press, Data sampling operation...

♦  Interaction – between other classes:
●  Channel assignment, Process step,...

♦  Specification – shared characteristics:

●  Common data shared by multiple instances of other classes

#-4 • xtUML and BridgePoint: Class Modeling

Class Diagram Elements

Class Name

Attributes
{

Operations

{

Tags:
 Class number
 Keyletters

Verb phrase

Association Label

Multiplicity
Conditionality

#-5 • xtUML and BridgePoint: Class Modeling

Class Blitz – Exercise

♦  Build a class diagram of a clock
●  Consider what discrete parts are in a

clock
●  Capture relationships between parts

of the clock
●  Place attributes in each class

#-6 • xtUML and BridgePoint: Class Modeling

Associations

♦  An association is a domain relationship between classes.

♦  Associations can be navigated to locate particular class instance.

♦  Associations can be created in a class diagram as lines between
classes.

♦  An association relating to a class instance of the same type is
called a Reflexive Association.

#-7 • xtUML and BridgePoint: Class Modeling

Representing data relationships

♦  A representation of a relationship between real world things
♦  Binary associations – between two participant classes

●  One-to-one [1:1]
●  One-to-many [1:M]
●  Many-to-many [M:M]

♦  Unconditional, conditional, bi-conditional
●  Either or both of participant classes may not always be related.

♦  Association is 'reflexive' when each 'end' is the same class
●  Navigation must then use verb phrase to distinguish 'direction'.

♦  Any binary association may have its own characteristics
●  Add an association class with attributes, associations, state model...

♦  Generalization, specialization use a special association
●  No verb phrases needed: 'is a' assumed

#-8 • xtUML and BridgePoint: Class Modeling

Multiplicity & Conditionality

♦  Multiplicity – Can there be more than one?

♦  Conditionality – Must there be one at all?

Conditionality Multiplicity Nomenclature

conditional one 0..1

conditional many *

unconditional one 1

unconditional many 1..*

#-9 • xtUML and BridgePoint: Class Modeling

Examples: One

#-10 • xtUML and BridgePoint: Class Modeling

Examples: Many

#-11 • xtUML and BridgePoint: Class Modeling

Reflexive associations
♦  Associations between a pair of instances of the same class
♦  Generally conditional with multiplicity of 1

#-12 • xtUML and BridgePoint: Class Modeling

Reflexive Associations: Exercise

♦  Create a class diagram of a hand

♦  Classes to use: palm, wrist, finger

♦  Consider conditionality and multiplicity of
associations

♦  Use at least one reflexive association

#-13 • xtUML and BridgePoint: Class Modeling

Lab 1: Exercise 4

♦  Defining the functionality of our GPS Watch System

#-14 • xtUML and BridgePoint: Class Modeling

Association classes

Association class

#-15 • xtUML and BridgePoint: Class Modeling

Another Associative Example

This indicates that the
same Spacecraft and
Ground Station can
communicate multiple
times

#-16 • xtUML and BridgePoint: Class Modeling

Generalization
♦  Not all languages support inheritance
♦  Multiple instances – allows reclassification/subtype

migration
♦  Much like 1:1 association
♦  No polymorphic operation – only events
♦  Use when there are interesting associations on

subtypes
♦  Model compiler can make may implement it with

inheritance (where available) or even decide to flatten
the structure

♦  No calls to super
♦  Future – inherited properties: operations and attributes

#-17 • xtUML and BridgePoint: Class Modeling

Generalization Example
No verb phrase,
 “is a” assumed

Draw from child type to
intermediate point

Draw from parent type
to intermediate point

#-18 • xtUML and BridgePoint: Class Modeling

Construction Quality Class Diagrams

♦  For associations, consider whether the relationship always holds
true – conditionality – at each end.

♦  Consider whether there may be more than one participant class at
each end - multiplicity.

♦  Choose meaningful names for classes; meaningful phrases for
associations.

♦  Write descriptions as you go! They may cause you to think again
about your analysis.

#-19 • xtUML and BridgePoint: Class Modeling

Attributes
♦  An attribute represents a characteristic shared by all of the

instances of a class
♦  Descriptive attributes represent inherent characteristics

Trackpoint has latitude, longitude, elevation.
♦  Naming attributes represent arbitrary labeling of instances
♦  Which characteristics are considered relevant depends on the

point of view – the “purpose” - of the application
Trackpoint also requires time, but not air temperature, windspeed...

#-20 • xtUML and BridgePoint: Class Modeling

Quality Attributes

♦  Each instance has exactly one value for each attribute
●  Lots of “Not Applicable” may indicate the class should be split
●  BP supports arrays as attributes, but these are intended to make

interfacing with legacy code easier

♦  All attributes are Atomic
●  A need to 'parse' values suggests using separate attributes

♦  Every attribute should characterize the entire instance
●  Attributes related to other concepts should be in a separate class
●  Attributes related to only a subset of the instance population suggests

that some generalization is needed.

#-21 • xtUML and BridgePoint: Class Modeling

Identifying Attributes

♦  Some attributes abstracted for a class represent values that
may be used to uniquely find an instance, e.g.
●  License Number
●  WayPoint ID
●  Ticket Number

♦  Highlighting these attributes helps understanding of the
subject matter being modeled

♦  In xtUML we call such attributes ‘Identifying Attributes’

#-22 • xtUML and BridgePoint: Class Modeling

Identifiers

♦  Sometimes, the value of more than one attribute is required to
uniquely identify an instance

♦  A group of one or more attributes required for instance
identification is known as an ‘Identifier’

♦  A class may have more than one Identifier as required
(BridgePoint supports up to three Identifiers)

#-23 • xtUML and BridgePoint: Class Modeling

Association Formalization

♦  Once a class has an identifier, it is possible formalize
associations it participates in using its identifier

♦  When this is done, a ‘copy’ of the attribute set is added to the
attributes of class at the other end of the association being
formalized

♦  Attributes migrated in this way are called ‘Referential
Attributes’

#-24 • xtUML and BridgePoint: Class Modeling

Formalized Spacecraft Example

Note that we abstracted a
Communication_ID identifying
attribute. We don’t want to use
the Spacecraft and
Groundstation ID’s to identify
the Communication

Why Not?

You can add prefixes to
Referential ID’s to
disambiguate them

#-25 • xtUML and BridgePoint: Class Modeling

High Precision Modeling: Referential Combination

♦  Where required, referential attributes may be combined

♦  At first glance, it looks like this saves storage space.
However, this is not the reason to do it. Combining referential
attributes means something very precise

♦  Example:
Airline_ID is combined
here.

According to the rules of
attribution covered
earlier, Airline_ID may
only take one value, this
combined referential
mandates that a pilot
may only fly aircraft that
his or her airline owns

#-26 • xtUML and BridgePoint: Class Modeling

Leverage Generalization

Here, we have documented the constraint that only In Service Aircraft
and On Duty Pilots will be doing any flying.

#-27 • xtUML and BridgePoint: Class Modeling

Paper Exercise: Putting it all together

♦  The application is a Electronic schematic drawing and PCB
layout tool.
●  We are required to analyse the Library for it. This Library is to

contain Integrated Circuits (for the schematic editor) and their
associated physical Packages (for the PCB layout editor).

●  Integrated circuits come in a variety of different packages to
support different deployments, prototyping, large scale
production, hardened applications (military space etc.).

●  Every integrated circuit has connections for power, digital input
and output etc.

●  Every Package has physical pins that carry these connections to
the outside world.

●  For any given package, we must know which pin carries which
connection.

●  Pins may be left unconnected, but every connection must get to
the outside or else the Package cannot function.

#-28 • xtUML and BridgePoint: Class Modeling

Paper Exercise: Solution

