The xtUML method - Building Class Diagrams

Analysis — questioning, thinking, sketching...

e Descriptive UML diagrams
— UuSe case, sequence, ...

Executable Modeling — formalizing the analysis:

e Component Diagrams (partitioning/interfaces)

Tt oromrt e)

e Class Diagrams (data)

e State Machines (control)

e Activities (processing)
Verification

e Interpretive Model Execution

Code generation
e Template and Rule-Based Translation

#-1

» xtUML and BridgePoint: Class Modeling

Class Diagrams

¢ Identify the types of object the component is concerned with
and draw them as classes.

¢ Abstract the characteristics that define the classes; these are
the class attributes.

¢ The choice of classes and attributes depends on the purpose
of the component.

¢ Draw associations to represent real world relationships that
exist between objects.

¢ During execution, instances of these classes and associations
will be created as necessary to represent the real world.

#-2 « xtUML and BridgePoint: Class Modeling

Some Common ‘Types' of Classes

¢ Tangible objects
e Laser, Mirror, Motor...

¢ Roles:
e User, Customer, Peripheral,...

¢ Discovered classes:
e Account, Packet header, Proxy,...

¢ Incident:
e Button press, Data sampling operation...

¢ Interaction — between other classes:
e Channel assignment, Process step,...

¢ Specification — shared characteristics:
e Common data shared by multiple instances of other classes

#-3 « xtUML and BridgePoint: Class Modeling

Class Diagram Elements

Class Name \=\

Attributes — |

—

Operations

Association Label — |

Multiplicity — |
Conditionality

/ags:
< Class number

> route
2,route}
{ Keyletters
N { name:intgger
purposeiinteger
Ly 3| fly(:void
2 belongs to 0.1 starts<— Verb phrase
— Rl R2
[5 1.x comprises 1| begins with
waypoint
{3,waypoint}
latitude:integer 1
longitude:integer
altitude:integer succeeds
1 R3
precedes

44 -

xtUML and BridgePoint: Class Modeling

Class Blitz — Exercise

¢ Build a class diagram of a clock

e Consider what discrete parts are in a
clock

e Capture relationships between parts
of the clock

e Place attributes in each class

#-5 « xtUML and BridgePoint: Class Modeling

Associations
¢ An association is a domain relationship between classes.
¢ Associations can be navigated to locate particular class instance.

¢ Associations can be created in a class diagram as lines between
classes.

¢ An association relating to a class instance of the same type is
called a Reflexive Association.

#-6 « xtUML and BridgePoint: Class Modeling

* o

Representing data relationships

A representation of a relationship between real world things
Binary associations — between two participant classes

e One-to-one [1:1]

e One-to-many [1:M]

e Many-to-many [M:M]
Unconditional, conditional, bi-conditional

e Either or both of participant classes may not always be related.
Association is 'reflexive' when each 'end’ is the same class

e Navigation must then use verb phrase to distinguish 'direction’.
Any binary association may have its own characteristics

e Add an association class with attributes, associations, state model...
Generalization, specialization use a special association

e No verb phrases needed: ‘is a' assumed

#-7 « xtUML and BridgePoint: Class Modeling

Multiplicity & Conditionality

¢ Multiplicity — Can there be more than one?

¢ Conditionality — Must there be one at all?

Conditionality Multiplicity Nomenclature
conditional one 0..1
conditional many *

unconditional one 1
unconditional many 1.7

#-8 « xtUML and BridgePoint: Class Modeling

Examples: One

Licensed Pilot AviationLicence
{3,LPL} {4,LIC}
1 R2 1
held holds
by
C++ Statement ;
Breakpoint
{5,5TMT} {6,BRP}
1 R3 0.1
halts execution
execution halted by
of
Plug Socket
{1,PLG} {2,5KT}
0.1 R1 0.1
accepts is located in

#-9 « xtUML and BridgePoint: Class Modeling

Examples: Many

Account Transacticn
{3,680 {4, TR}
1 R2 *
is made on has history
of
Cormpetion Round
{5,COMP} {6,RND}
1 R3 1o
is held as is made up
part of of
Product Discount
{11,PRD} {12,015}
0.1 R10 *
applies is eligible for
to

#-10 » xtUML and BridgePoint: Class Modeling

Reflexive associations

¢ Associations between a pair of instances of the same class
¢ Generally conditional with multiplicity of 1

2 Palette >

o0

[» Select
J Zoom Tool

(= Default Toolset <o

{13 Subsystem

{13 Sequence
Diagram

f{] Communication
Diagram

{3 Use Case
Diagram

{13 Activity Diagram
B Class

“>" Imported Class

;9"*‘ Association

“"} Associative Link
‘\"f) Supertype
W‘" Subtype

0.,

1

nas first

0.,

1

TrackPoint

{3, TrackPoint}

precedes
0.1

time:integer
longitude:real
latitude:real
speed:real

has last

R2

0.1

fFollows

#11

» xtUML and BridgePoint: Class Modeling

Reflexive Associations: Exercise

¢ Create a class diagram of a hand

¢ Classes to use: palm, wrist, finger

¢ Consider conditionality and multiplicity of
associations

¢ Use at least one reflexive association

#-12 » xtUML and BridgePoint: Class Modeling

Lab 1: Exercise 4

¢ Defining the functionality of our GPS Watch System

#-13 » xtUML and BridgePoint: Class Modeling

Association classes

2% Palette b
[Select

&J Zoom Tool =
workout session
(= Default Toolset < {Q,WSESSIO'NT\

4 Subsystem current_state:state<State_Model> Association class

{13 Sequence
Diagram

{13 Communication

Diagram -

{13 Use Case L track log 0.1 1| tracking:Specification: Warkout Specification

Diagram {2, TRACK} |plans steps for records steps 3{1111 .WSPEC}

o specified by
. . name:string
Sﬁa Adw'ty Dlagram current_state: state=State_Model=

B Class samplePoirt(): void
5 Imported Class

? Association

“% Associative Link
$7‘ Supertype

@ Subtype

name:string

1

is a datapoint for L
1

#-14 » xtUML and BridgePoint: Class Modeling

Another Associative Example

Spacecraft

{3,5¢C}

MName:string

Ground Station

{4,Gs}

Marne:string

This indicates that the
same Spacecraft and
Ground Station can
communicate multiple
times

Bearing:degrees
Ascension:degress

Declination:deqg
time:timestanp
Content:sting

rees

R2 * | |atitude:degress
- Longitude:degess
receives {*} 1 sends
messages . messages
from to
Cornmunication
{6,COM}

#-15 « xtUML and BridgePoint: Class Modeling

Generalization

¢ Not all languages support inheritance

¢ Multiple instances — allows reclassification/subtype
migration

¢ Much like 1:1 association
¢ No polymorphic operation — only events

¢ Use when there are interesting associations on
subtypes

¢ Model compiler can make may implement it with
inheritance (where available) or even decide to flatten
the structure

¢ No calls to super
¢ Future - inherited properties: operations and attributes

#-16 + xtUML and BridgePoint: Class Modeling

Generalization Example

o verb phrase,

[{H ”»
_ is a” assumed -
:gn?et:e {110,GPACE}
0.1 paceinteger
step goal
{108 SGOAL}
R103
{disjoint,
complete}
pulse
{109,GPULSE}
ratetinteger

B Class

5" Imported Class
¥ Association

Draw from parent type Associative Liok
. . . \ 3
to intermediate point

I @ : Subtype I—/

Draw from child type to
intermediate point

#-17 »

xtUML and BridgePoint: Class Modeling

Construction Quality Class Diagrams

¢ For associations, consider whether the relationship always holds
true — conditionality — at each end.

¢ Consider whether there may be more than one participant class at
each end - multiplicity.

¢ Choose meaningful names for classes; meaningful phrases for
associations.

¢ Write descriptions as you go! They may cause you to think again
about your analysis.

#-18 » xtUML and BridgePoint: Class Modeling

Attributes

¢ An attribute represents a characteristic shared by all of the
instances of a class

¢ Descriptive attributes represent inherent characteristics
Trackpoint has latitude, longitude, elevation.
¢ Naming attributes represent arbitrary labeling of instances

¢ Which characteristics are considered relevant depends on the
point of view — the “purpose” - of the application

Trackpoint also requires time, but not air temperature, windspeed...

precedes
TrackPoint
thot {3, TrackPoint} fhot
nas first |time:integer
longitude:real
latitude:real A2
speed:real
Dol Dol
has last follows

#-19 « xtUML and BridgePoint: Class Modeling

Quality Attributes

¢ Each instance has exactly one value for each attribute

e Lots of “Not Applicable” may indicate the class should be split

e BP supports arrays as attributes, but these are intended to make
interfacing with legacy code easier

¢ All attributes are Atomic
e A need to 'parse’ values suggests using separate attributes

¢ Every attribute should characterize the entire instance
e Attributes related to other concepts should be in a separate class

e Attributes related to only a subset of the instance population suggests
that some generalization is needed.

#-20 » xtUML and BridgePoint: Class Modeling

Identifying Attributes

¢ Some attributes abstracted for a class represent values that
may be used to uniquely find an instance, e.qg.

e License Number
e WayPoint ID
e Ticket Number

¢ Highlighting these attributes helps understanding of the
subject matter being modeled

¢ In xtUML we call such attributes ‘Identifying Attributes’

#-21 » xtUML and BridgePoint: Class Modeling

Identifiers

¢ Sometimes, the value of more than one attribute is required to
uniquely identify an instance

¢ A group of one or more attributes required for instance
identification is known as an ‘ldentifier’

¢ A class may have more than one ldentifier as required
(BridgePoint supports up to three Identifiers)

#-22 + xtUML and BridgePoint: Class Modeling

Association Formalization

¢ Once a class has an identifier, it is possible formalize
associations it participates in using its identifier

¢ When this is done, a ‘copy’ of the attribute set is added to the
attributes of class at the other end of the association being
formalized

¢ Attributes migrated in this way are called ‘Referential

» y
Attributes
Company Employee
14,C0F | 4 R4 1, % {5,EMP}
Ticker_Symbol:string U . ermplovs Employee_Number: integer {I}
For ploY Ticker_Symbol:string {I,R4}

#-23 » xtUML and BridgePoint: Class Modeling

Formalized Spacecraft Example

Spacecraft Ground Station
{3,5CH {4,GS}
N ot I MNarne:string {I}
bl i * R2 * | Latitude:degress
: Longitude:degess
receives {*} s sends
messages . messages
from to
Note that we abstracted a
Communication_ID identifying :
attribute. We don’ t want to use —
Communication
the Spacecraft and {6,COM} _
the COmmunlcatlon Bearing;degregs Referentlal ID S tO
Ascension:degrees disambiguate them
Declination:degrees
Why Not? time:timestarmp
Content:stig
Spacecraft_MName:string {R2}
Ground_Station_Name:string {R2}

#-24 « xtUML and BridgePoint: Class Modeling

High Precision Modeling: Referential Combination

¢ Where required, referential attributes may be combined

¢ At first glance, it looks like this saves storage space.
However, this is not the reason to do it. Combining referential
attributes means something very precise

Airline A
‘ Exa m p I e : Airline_ID:string I
1 1
T . . works
Airline_ID is combined i e for R
here.

According to the rules of
attribution covered

earlier, Airline_ID may L | owns 1. | employs

only take one value, this pym— Pilot o
combined referential e T S—— T - e r— w2
mandates that a piIOt fitn!gze—l_?qfr:g]eﬁ':inneger {Rl'{RRaa}i is scheduled to fly is scheduled to be Arive e e
may only fly aircraft that fown

his or her airline owns

#-25 « xtUML and BridgePoint: Class Modeling

Leverage Generalization

1..% owns

Aircraft

{2,AC}

Tail_Mumber:string
Airline_ID:string

{1,12}
{12,R1}

A

Qut of Service aircraft

{4,ACOS}
Tail_Number:string {I,R6}
Airline_ID:string {I,R6}

In Service Aircraft

1”*

employs

Pilot

13,PL}

License_Number:integer
Airline_ID:string

{1,12}
{12,R2}

i

{5,ACIS}
Tail_Mumber:string {I,RE}
Airline_ID:string {I,R6,R3}
License_MNumber:integer {R3}

On Duty Pilot OFf Duty Pilot
{4,POD} {5,PFD}
License_MNumber:integer {I,R4} License_Number:integer {I,R4}
Airline_ID:string {I,R4} Airline_ID:string {I,R4}

1 | is scheduled to
Fly

1 | is scheduled to
be flown by

Here, we have documented the constraint that only In Service Aircraft
and On Duty Pilots will be doing any flying.

#-26 xtUML and BridgePoint: Class Modeling

Paper Exercise: Putting it all together

¢ The application is a Electronic schematic drawing and PCB
layout tool.

e We are required to analyse the Library for it. This Library is to
contain Integrated Circuits (for the schematic editor) and their
associated physical Packages (for the PCB layout editor).

e Integrated circuits come in a variety of different packages to
support different deployments, prototyping, large scale
production, hardened applications (military space etc.).

e Every integrated circuit has connections for power, digital input
and output etc.

e Every Package has physical pins that carry these connections to
the outside world.

e For any given package, we must know which pin carries which
connection.

e Pins may be left unconnected, but every connection must get to
the outside or else the Package cannot function.

#-27 + xtUML and BridgePoint: Class Modeling

Paper Exercise: Solution

R4 1l

Material:string

is contained in

Description:string

Package
{8,PKG}
Device_ID:string {l,R4}
Package_ID:string {IF

*

R7 L.

Integrated Circuit
{7,1C}
Device_ID:string {I+
Description:string
1
contains
1 provides input
or output on
R6
has inputs and
1..*% | outputs
Connection
{10,CON}
Device_ID:stting {I,LRE}
MName:string {1+ 0.1
Description:string
has
allocated

is alocated to

1 | allows wiring
up of
RS
is connected to the
1.% | outside world by
Pin
{9,PIN}
Device_ID:string {RS,R7}
Package_ID:string {RS}
Pin_ID:integer
MNarne:string {R7}

#-28 « xtUML and BridgePoint: Class Modeling

