
#-1 • xtUML and BridgePoint: Intro to OAL

The xtUML method – Specifying Activities
♦  Analysis – questioning, thinking, sketching...

●  Descriptive UML diagrams
–  use case, sequence, ...

♦  Executable Modeling – formalizing the analysis:
●  Component Diagrams (partitioning/interfaces)
●  Class Diagrams (data)
●  State Machines (control)

●  Activities (processing)

♦  Verification
●  Interpretive Model Execution

♦  Code generation
●  Template and Rule-Based Translation

#-2 • xtUML and BridgePoint: Intro to OAL

Activities

♦  An activity specifies processing within the model
♦  An action can be associated with the following modeled elements:

●  states
●  bridge operations
●  functions
●  class and instance-based operations
●  mathematically-derived attributes
●  interface reference operations and signals

♦  The Object Action Language (OAL) is used to define the
semantics for the processing that occurs in an action.

#-3 • xtUML and BridgePoint: Intro to OAL

Object Action Language [OAL]

♦  Since 2001, the UML standard has incorporated a defined action
semantics... but has not yet defined a syntax for specifying actions.

♦  Object Action Language is a concrete syntax which implements the
UML standard

♦  OAL is complete enough to be executable, but abstract enough
that it does not prescribe implementation specifics.

create object instance request of REQ;

select one channel related by device->CHAN[R100];

assign device.priority = lastpriority + 1;

generate CHAN11:'host relinquish' to channel;

#-4 • xtUML and BridgePoint: Intro to OAL

What OAL can do:

♦  Create and delete instances.

♦  Link and unlink associations between instances.

♦  Select instances across association links.

♦  Select instances based on attribute values.

♦  Read and write attribute values.

♦  Compute new values.

♦  Control statements.

♦  Generate events.

♦  Invoke interface operations.

#-5 • xtUML and BridgePoint: Intro to OAL

Data Types
♦  Implicit Typing

●  All data items are implicitly typed by the value assigned to them on
their first use within an action.

♦  Simple Data Types
●  Integer
●  Real
●  String
●  Boolean

♦  System Data Types
●  Date
●  Timestamp
●  Unique ID

♦  Reference Types
●  Timer Handle
●  Instance Handle
●  Instance Handle Set
●  Event Instance
●  Component Handle

#-6 • xtUML and BridgePoint: Intro to OAL

Operators

♦  Arithmetic
●  + - * / %
●  Unary -

♦  Boolean
●  and or
●  Unary not

♦  Logical
●  == !=
●  < <= > >=

♦  Assignment
●  assign x = 1;
●  Assign keyword optional

♦  Instance Handles
●  == !=
●  empty not_empty
●  cardinality e.g.

expired = (account.balance == 0.00) and
((TIM::get_current_time() - last_pay_time) >=max_wait) ;

#-7 • xtUML and BridgePoint: Intro to OAL

Expressions

a = 3 ; /* integer typed local variable */

assign x = 3.14 ; /* floating point value (real) */

y = 11.0 ; /* another real */

done = false; // boolean typed local variable

z = x + y * x; /* Operator Precedence */

b = a % 2; /* remainder operator */

s1 = “Hello”; /* String Variable – dynamic size */

s2 = “World!”; // C++ Comments also allowed

s3 = s1 + “ “ + s2; // String Concatenation

#-8 • xtUML and BridgePoint: Intro to OAL

Lab 1: Exercise 5

♦  Run the model in the xtUML Debugging Perspective

#-9 • xtUML and BridgePoint: Intro to OAL

IF Statement

♦  No semicolon after the IF statement

♦  As many ELIF clauses as desired

♦  Nested IF statements allowed, END IF; terminates statement.

if (<Boolean or Logical equation>)
 // do something

elif (<Boolean or Logical equation>)
 // do something

else
 // or something

end if;

if (empty firstPoint)
 // this is the first trackPoint in the log
 relate self to trackPoint across R1.'has
first';
 relate self to trackPoint across R3.'has last';
else
 unrelate self from lastPoint across R3.'has
last';
 relate self to trackPoint across R3.'has last';
 relate lastPoint to trackPoint across
R2.'follows';
end if;

#-10 • xtUML and BridgePoint: Intro to OAL

Loops

♦  WHILE and FOR EACH. Use WHILE to implement a FOR loop.
♦  Can be nested.
♦  Defines a local scope.

for each mobile in mobiles
 // do something

end for;

i = 0;
while (i < 4)

 // do something
 i = i + 1;

end while;

#-11 • xtUML and BridgePoint: Intro to OAL

Nesting

for each this_Cabin in bank_Cabins
 select one its_Shaft related by this_Cabin->Shaft[R2];
 if (its_Shaft.In_service)
 cab_delay =
this_Cabin.Estimate_travel_delay(Floor:my_Floor.Name,
 Calling_dir:param.Dir);
 if ((cab_delay < shortest_delay) or (first_cabin))
 shortest_delay = cab_delay;
 param.OUT_Shaft = its_Shaft.ID;
 end if;
 end if; // in service
 first_cabin = false;
end for;

#-12 • xtUML and BridgePoint: Intro to OAL

Break and Continue

♦  Break completely exits the inner-most loop
♦  Continue exits the current iteration of the inner-most loop

while (CTL::create())
 for each a in aset
 if (a.name == "Jeff")
 break;
 end if;
 create object instance b
of B;
 relate b to a across R1;
 end for;
end while;

while (CTL::create())
for each a in aset
 if (a.ID == 13)
 continue;
 end if;
 create object instance b
of B;
 relate b to a across R1;
end for;
end while;

#-13 • xtUML and BridgePoint: Intro to OAL

Functions

♦  Function Invocation

♦  Return value

♦  Accessing Parameters
●  param is a pre-pended keyword to access function arguments

::fnName(ParamName1:ParamValue1, …);
::start();
probe = ::getProbe(probeId: p);

return <expression>; // <expression> is optional
return “down”;

select any probe from instances of SP where
 selected.probe_ID == param.probe_id;

trackPoint.latitude = param.location.latitude;

#-14 • xtUML and BridgePoint: Intro to OAL

Attributes

♦  Writing Attributes
●  [assign] <instance handle>.<attribute> = <expression>;
●  assign keyword is optional

♦  Reading Attributes

♦  Writing Mathematically Derived Attributes
●  In Model Explorer, set as derived attribute
●  Then select and Open With > Activity Editor

create object instance my_account of ACCT;
my_account.branch = rcvd_evt.this_branch;

myx = myrobot.x_position;

self.volume =
self.length*self.width*self.height;

#-15 • xtUML and BridgePoint: Intro to OAL

Mathematically Derived Attributes

♦  Writing Mathematically Derived Attributes
●  In Model Explorer, set as derived attribute
●  Then select and Open With > Activity Editor

self.volume = self.length * self.width * self.height;

●  No return statement required
●  Access attribute via self
●  Mathematically derived attributes

are read-only in all other places

#-16 • xtUML and BridgePoint: Intro to OAL

Create / delete statement

 Syntax:
 create object instance <instance handle> of <keyletter>;
 create object instance of <keyletter>;
 delete object instance <instance handle>;

create object instance trackPoint of TrackPoint;

delete object instance trackPoint;

#-17 • xtUML and BridgePoint: Intro to OAL

Relate / unrelate statement

Local instance
reference variable Association label

unrelate mobile from call across R1;

Local instance reference variable

relate mobile to call across R1;

♦  OAL is used to manage relationships between
specific instances of classes.

#-18 • xtUML and BridgePoint: Intro to OAL

Relate / unrelate “using“ statement
♦  Connecting two classes that have an associative class

stemming from their relationship.

relate mobile1 to mobile2

 across R1.’is busy on call’ using call;

Local instance reference variable

unrelate mobile1 from mobile2

 across R1.’is busy on call’ using call;

#-19 • xtUML and BridgePoint: Intro to OAL

Select any / many
♦  Selecting instances of a class

Key letters

select many mobiles from instances of MEQ

 where selected.serialNumber > 10000;

Local instance reference variable

Where clause

select any mobile from instances of MEQ;

#-20 • xtUML and BridgePoint: Intro to OAL

Select one / many … related by …

select one timer related by self->WorkoutTimer[R4];

Key letters Local instance
reference variable

Association
 label

♦  Select one requires the use of the related by clause
♦  ‘Self’ is the instance of the class that originates an action

Originating
class instance

#-21 • xtUML and BridgePoint: Intro to OAL

Example: Lap Time

select many lapMarkers related by self->LapMarker[R5];
for each lapMarker in lapMarkers
 unrelate self from lapMarker across R5;
 delete object instance lapMarker;
end for;

select one timer related by self->WorkoutTimer[R4];
create object instance lapMarker of LapMarker;
lapMarker.lapTime = timer.time;
relate self to lapMarker across R5;

#-22 • xtUML and BridgePoint: Intro to OAL

Lab 2: Exercise 1

♦  Create a class diagram for the Tracking subsystem in the GPS
Watch

#-23 • xtUML and BridgePoint: Intro to OAL

Control Structures

♦  Example:

 // Send a 'time for bed' event to all children 5 and under.
select many children from instances of C;
for each child in children
 if (child.age <= 5)
 while (child.awake)
 generate C1:'time for bed' () to child;
 if (not lights.out)
 generate C2:'turn off lights' () to child;
 end if;
 end while;
 end if;
end for;

#-24 • xtUML and BridgePoint: Intro to OAL

Example: Creating an Ordered List

create object instance trackPoint of TrackPoint;
trackPoint.time = workoutTimer.time;
trackPoint.longitude = param.location.longitude;
trackPoint.latitude = param.location.latitude;

select one firstPoint related by self->TrackPoint[R1];
select one lastPoint related by self->TrackPoint[R3];

if (empty firstPoint)
 // this is the first trackPoint in the log
 relate self to trackPoint across R1.'has first';
 relate self to trackPoint across R3.'has last';
else
 unrelate self from lastPoint across R3.'has last';
 relate self to trackPoint across R3.'has last';
 relate lastPoint to trackPoint across R2.'follows';
end if;

Select head of list

Select tail of list

Update new last point
Relations

Handle first point

♦  At each TrackPoint
update, this
operation is run on
an instance of
TrackLog

#-25 • xtUML and BridgePoint: Intro to OAL

Lab 3: Exercise 1

♦  Relate and unrelate class instances using OAL

