¢

¢

¢

¢

The xtUML method — Specifying Activities

Analysis — questioning, thinking, sketching...

e Descriptive UML diagrams
— UuSe case, sequence, ...

Executable Modeling — formalizing the analysis:
e Component Diagrams (partitioning/interfaces)
e Class Diagrams (data)
e State Machines (control)

e Activities (processing)

Verification
e Interpretive Model Execution

Code generation
e Template and Rule-Based Translation

#-1

+ xtUML and BridgePoint: Intro to OAL

Activities

¢ An activity specifies processing within the model

¢ An action can be associated with the following modeled elements:
e states

bridge operations

functions

class and instance-based operations

mathematically-derived attributes

interface reference operations and signals

¢ The Object Action Language (OAL) is used to define the
semantics for the processing that occurs in an action.

#-2 « xtUML and BridgePoint: Intro to OAL

Object Action Language [OAL]

¢ Since 2001, the UML standard has incorporated a defined action
semantics... but has not yet defined a syntax for specifying actions.

¢ Object Action Language is a concrete syntax which implements the
UML standard

¢ OAL is complete enough to be executable, but abstract enough
that it does not prescribe implementation specifics.

create object instance request of REQ;
select one channel related by device->CHAN[R100];
assign device.priority = lastpriority + 1;

generate CHAN1ll:'host relinquish' to channel;

#-3 « xtUML and BridgePoint: Intro to OAL

What OAL can do:

Create and delete instances.

Link and unlink associations between instances.
Select instances across association links.
Select instances based on attribute values.
Read and write attribute values.

Compute new values.

Control statements.

Generate events.

® & & O ¢ O O o o

Invoke interface operations.

#-4 « xtUML and BridgePoint: Intro to OAL

Data Types

¢ Implicit Typing

e All data items are implicitly typed by the value assigned to them on
their first use within an action.

¢ Simple Data Types

e Integer

e Real

e String

e Boolean
¢ System Data Types

e Date

e Timestamp

e Unique ID
¢ Reference Types

e Timer Handle
Instance Handle
Instance Handle Set
Event Instance
Component Handle

#-5 « xtUML and BridgePoint: Intro to OAL

Operators

¢ Arithmetic
o + -/ %
e Unary -
¢ Boolean
e and or
e Unary not
¢ Logical
o == I=
o < <= > >=
¢ Assignment
e assign x = 1;
e Assign keyword optional
¢ Instance Handles
o == I=
e empty not _empty

e cardinality e.g.
expired = (account.balance == 0.00) and

((TIM::get_current_time() - last_pay_time) >=max_wait) ;

#-6 < xtUML and BridgePoint: Intro to OAL

Expressions

a=3; [* integer typed local variable */
assign x = 3.14 ; [* floating point value (real) */
y=11.0; [* another real */

done = false; I/l boolean typed local variable
z=X+y*X; I* Operator Precedence */
b=a%2; [* remainder operator */

s1 = “Hello”; [* String Variable — dynamic size */
s2 = “World!”; /| C++ Comments also allowed
s3=s1+"“ “+s2; Il String Concatenation

#-7 « xtUML and BridgePoint: Intro to OAL

Lab 1: Exercise 5

¢ Run the model in the xtUML Debugging Perspective

#-8 « xtUML and BridgePoint: Intro to OAL

IF Statement

¢ No semicolon after the IF statement

¢ As many ELIF clauses as desired

¢ Nested IF statements allowed, END IF; terminates statement.

if (<Boolean or Logical equation>)

I/l do something
elif (<Boolean or Logical equation>)

I/l do something
if (empty firstPoint)

else . // this is the first trackPoint in the log
Il or somethlng relate self to trackPoint across Rl. 'has
end if; first';
relate self to trackPoint across R3.'has last’';
else
unrelate self from lastPoint across R3. 'has
last';

relate self to trackPoint across R3.'has last';
relate lastPoint to trackPoint across
R2.'follows';

end 11 -

#-9 « xtUML and BridgePoint: Intro to OAL

Loops

WHILE and FOR EACH. Use WHILE to implement a FOR loop.
Can be nested.
Defines a local scope.

® & o

for each mobile in mobiles
// do something
end for;

i=20;

while (i < 4)
// do something
i=1i++1;

end while;

#-10 » xtUML and BridgePoint: Intro to OAL

Nesting

for each this Cabin in bank_ Cabins
select one 1ts Shaft related by this Cabin->Shaft[R2];
if (1ts_Shaft.In_serv1ce)
cab delay =
this Cabin.Estimate travel delay(Floor:my Floor.Name,
Calling dir:param.Dir) ;
if ((cab_delay < shortest delay) or (first cabin))
shortest delay = cab_delay;
param.OUT Shaft = its Shaft.ID;
end if;
end if; // in service
first cabin = false;
end for;

#11

+ xtUML and BridgePoint: Intro to OAL

Break and Continue

¢ Break completely exits the inner-most loop
¢ Continue exits the current iteration of the inner-most loop

while (CTL: :create())
for each a in aset
if (a.name == "Jeff")

break;
end if;
create object instance b
of B;
relate b to a across Rl;
end for;
end while;

while (CTL: :create())
for each a in aset
if (a.ID == 13)

continue;

end if;

create object instance b
of B;

relate b to a across R1;

>
end for;

end while;

#12 »

xtUML and BridgePoint: Intro to OAL

Functions

¢ Function Invocation

: : fnName (ParamNamel : ParamValuel, ..);
::start () ;
probe = ::getProbe (probelId: p);

¢ Return value

return <expression>; // <expression> is optional
return “down’;

¢ Accessing Parameters
e param is a pre-pended keyword to access function arguments

select any probe from instances of SP where
selected.probe ID == param.probe id;
trackPoint.latitude = param.location.latitude;

#-13 » xtUML and BridgePoint: Intro to OAL

Attributes

¢ Writing Attributes

e [assign] <instance handle>.<attribute> = <expression>;
e assign keyword is optional

create object instance my account of ACCT;
my account.branch = rcvd evt.this branch;

¢ Reading Attributes

myx = myrobot.x position;

¢ Writing Mathematically Derived Attributes
e In Model Explorer, set as derived attribute
e Then select and Open With > Activity Editor

self.volume =

self.length*self.width*self.height;

#-14 » xtUML and BridgePoint: Intro to OAL

Mathematically Derived Attributes

¢ Writing Mathematically Derived Attributes

e In Model Explorer, set as derived attribute
e Then select and Open With > Activity Editor

self.volume = self.length * self.width * self.height;,

e No return statement required

Access attribute via self — 1
rackLog

Mathematically derived attributes ETeckod | ot

0.1 |gdistance:real

are read-only in all other places currentSpeedireal

provides high [cyrrentPacereal {M})

resolution currentHeartRatereal 4
data for startTime:timestamp is last for
lastKknownLocation:Location
hasLocation:boclean

addTrackPoint(location:Location):void
clearTrackPoints():void

1| marksend 1| marks heart
of lab in rate chanae in

nc ne

#-15 » xtUML and BridgePoint: Intro to OAL

Create / delete statement

Syntax:

create object instance <instance handle> of <keyletter>;
create object instance of <keyletter>;
delete object instance <instance handle>;

preceeds

R1 TrackPoint
0.1 {3,TrackPoint} | 0..1

has timeinteger
first longitude:real
latitude:real
speed:real R2

0.1 0.1

has follows
last

create object instance trackPoint of TrackPoint;

delete object instance trackPoint;

#-16 -

xtUML and BridgePoint: Intro to OAL

Relate / unrelate statement

¢ OAL is used to manage relationships between
specific instances of classes.

relatelmobile'to call acrosislj

\~\Y,_/ kYJ

Local instance o
reference variable Association label

unrelate mobile from Fal% across Rl;

Local instance reference variable

mobile equipment

{1,MEQ}

serialNumber:string

myNumber:string

R1

0.1

is current
activity for

is busy on

call

{3,CALL}

isDialledCall:boolean
subscriberNumber:string

#-17 » xtUML and BridgePoint: Intro to OAL

Relate / unrelate “using” statement

¢ Connecting two classes that have an associative class
stemming from their relationship.

relate mobilel to mobile?2

across Rl.’ is busy on call’ using call;

Local instance reference variable

unrelate mobilel from mobile2

across Rl. is busy on call using call;

Mobile Equipment 0..1 I
{1MEQ; - (3,CALL}
serialNumber:string - ’
myNumber:string 0.1 |R1 startTime:timestamp
is busy on call

#-18 » xtUML and BridgePoint: Intro to OAL

Select any / many

¢ Selecting instances of a class

select any mobile from instances of MEQ:

W_/ W./

Local instance reference variable Key letters

select many mobiles from instances of MEQ

yhere selected.serialNumber > 10000j

—~—— e

——

Mobile Equipment 0.1 Where clause

11,MEQ}

serialNumber:string

myNumber:string 0.1 R1

is busy on call

#-19 « xtUML and BridgePoint: Intro to OAL

Select one / many ... related by ...

¢ Select one requires the use of the related by clause
¢ ‘Self’ is the instance of the class that originates an action

select one timer related by self->WorkoutTimer[R4];

W_/ \ Y J S— /W_/
Local instance Originating Key letters Association
reference variable class instance label

is
bbbbb
timed

||||||

eeeeeeeeee
lap in

#-20 » xtUML and BridgePoint: Intro to OAL

Example: Lap Time

select one timer related by self->WorkoutTimer|[R4];
create object instance lapMarker of LapMarker;
lapMarker.lapTime = timer.time;

relate self to lapMarker across R5;

1| marks end of
lap in

RS

has laps
. defined by

LapMarker
{4,LapMarker}

lapTime:integer

select many lapMarkers related by self->LapMarker[R5];
for each lapMarker in lapMarkers

unrelate self from lapMarker across RS5;

delete object instance lapMarker;
end for;

#-21 » xtUML and BridgePoint: Intro to OAL

Lab 2: Exercise 1

¢ Create a class diagram for the Tracking subsystem in the GPS
Watch

#-22 « xtUML and BridgePoint: Intro to OAL

Control Structures

¢ Example:

// Send a 'time for bed' event to all children 5 and under.
select many children from instances of C;
for each child in children
if (child.age <= 5)
while (child.awake)
generate Cl:'time for bed' () to child;
if (not lights.out)
generate C2:'turn off lights' () to child;
end if;
end while;
end if;
end for;

#-23 « xtUML and BridgePoint: Intro to OAL

Example: Creating an Ordered List

¢ At each TrackPoint

update, this

operation is run on

an instance of
TrackLog

preceeds

R1
1 0.1

TrackPaint

{3, TrackPoint} | %1

R2

clearTrackPoints():void
addLapMarker():void
clearLapMarkers():void
addHeartRateSample{heartRate:real):void
clearHeartRateSamples():void

init{):void

TrackLog
{2, TrackLog}

distance:real is start of as first time:integer

currentSpeed:real longitude:real
1| currentPace:real {M} latitude:real

currentHeartRate:real speed:real

startTime:timestamp

lastknownLocation:Location 0.

hasLocation:boolean

is IaM has last
addTrackPoint(location:Location): void A

0.1

follows

1| marks end of 1
lap in

marks heart fate

create object instance trackPoint of TrackPoint;
trackPoint.time = workoutTimer.time;
trackPoint.longitude = param.location.longitude;
trackPoint.latitude = param.location.latitude;

select one firstPoint related by self->TrackPoint[R1];
select one lastPoint related by self->TrackPoint[R3];

if (empty firstPoint)
/I this is the first trackPoint in the log
relate self to trackPoint across R1.'has first';
relate self to trackPoint across R3.'has last';
else
unrelate self from lastPoint across R3.'has last’;
relate self to trackPoint across R3.'has last';

relate lastPoint to trackPoint across R2.'follows";

end if;

—

change in

Select tail of list

}_.

Handle first point

/

Update new last point
Relations

Select head of list

#-24 « xtUML and BridgePoint: Intro to OAL

Lab 3: Exercise 1

¢ Relate and unrelate class instances using OAL

#-25 » xtUML and BridgePoint: Intro to OAL

