
#-1 • xtUML and BridgePoint: State Modeling

The xtUML method - Building State Machines
♦  Analysis – questioning, thinking, sketching...

●  Descriptive UML diagrams
–  use case, sequence, ...

♦  Executable Modeling – formalizing the analysis:
●  Component Diagrams (partitioning/interfaces)
●  Class Diagrams (data)

●  State Machines (control)

●  Activities (processing)
♦  Verification

●  Interpretive Model Execution
♦  Code generation

●  Template and Rule-Based Translation

#-2 • xtUML and BridgePoint: State Modeling

State Machines = control flow

♦  Some classes have dynamic behavior; they progress through
stages during their lifetime.

♦  The collection of stages and the order of progression
constitutes the lifecycle, represented as a state machine.

#-3 • xtUML and BridgePoint: State Modeling

State Machines

♦  Each existing instance of a class is in exactly one state of its
lifecycle at any instant.

♦  Transitions between states are driven by received signals,
called events.

♦  Events arise from incidents in the real world appearing as
signals on component interfaces.

♦  Internally, state machines may generate new events to
propagate change to other state machines.

♦  Internally generated events may be delayed by timers.

#-4 • xtUML and BridgePoint: State Modeling

State Machine Diagram Elements

Activity

State

Assigned Event

Transition

#-5 • xtUML and BridgePoint: State Modeling

Event Sources

Timer

#-6 • xtUML and BridgePoint: State Modeling

Timers

♦  A timer allows a pre-created event to
be delivered at some future time

♦  The event is placed in the event
queue when the timer expires

♦  One shot or recurring

♦  Delayed events define minimum
delay

#-7 • xtUML and BridgePoint: State Modeling

Checking for Completeness
♦  An automatic garage door: Two Buttons and Position

Sensors

#-8 • xtUML and BridgePoint: State Modeling

Filling the State Event Matrix

States

Events Entry Action

What do the empty cells mean?

#-9 • xtUML and BridgePoint: State Modeling

Filling the State Event Matrix (cont)

#-10 • xtUML and BridgePoint: State Modeling

Completed Diagram

#-11 • xtUML and BridgePoint: State Modeling

Initial and Final States

♦  When an instance of a class is synchronously created, it is placed
in its initial state
●  It has not 'transitioned' into that state – so the 'entry' state

action is not executed
●  An event assigned to a 'reflexive' transition can trigger

execution of the action
●  The initial state is the lowest numbered state

♦  A state machine may have one or more states with no outgoing

transitions
●  Obviously, when such a state is entered, the lifecycle can never

proceed further
●  The state can be marked as 'final'; after completing the state

action, the instance will delete itself.

#-12 • xtUML and BridgePoint: State Modeling

Creation Transition

♦  It is possible to create
instances asynchronously.

♦  New instance is created by the
architecture and the event is
enqueued to it

♦  Target state entry action is
executed and event data is
available to it.

generate TestCase:start(iterations:5)
to TestCase class;

This state is ‘final’

#-13 • xtUML and BridgePoint: State Modeling

Common State Machine Patterns

♦  One shot
●  Manage an action that takes time to complete
●  No record of action is required (Born and Die)
●  Record of action is required (Born and Quiescent)

♦  Cyclic
●  Reusable resource such as equipment, link etc.
●  Usually returns to an ‘Idle’ state

♦  Managing Contention for resources
●  Can be modeled using a singleton class or as a Class State

Machine
●  Class State Machine can co-exist with an Instance State Machine

if required

#-14 • xtUML and BridgePoint: State Modeling

Constructing State Machines

♦  Draw and name the states you know.

♦  Write a comment: what does this state mean?

♦  Draw the transitions you know, into or out of each state.

♦  Do incomplete transitions suggest missing states?

♦  Define and name the known events.

♦  Assign an event to each transition; any missing events?

♦  Do events need to carry event data?

♦  Check for completeness; add discovered states/transitions.

#-15 • xtUML and BridgePoint: State Modeling

Remember this?

#-16 • xtUML and BridgePoint: State Modeling

Where Data and State Modeling meet

This is the state model for Pilot (PL).
Note the creation of a new subtype to reflect the change of state

(and the destruction of the old subtype).
This technique is known as ‘Type Migration’.

#-17 • xtUML and BridgePoint: State Modeling

Descriptions for Everything

♦  State Machines
●  Describe the scenarios the state machine is required to support
●  Before beginning to identify states and events

♦  States
●  Describe the state in which the instance is found
●  Before beginning to identify transitions

♦  Events
●  Describe the real world occurrence that the events abstract
●  Before beginning to assign to transitions

You know it makes sense

